

Research article

Lactic acid bacteria and propionic acid affect the fermentation quality and deterioration rate of maize silage after aerobic exposure

Neelam Kumari^{1,2}, Nutan Chauhan¹, Diwas Pradhan¹, Sachin Kumar¹ and Nitin Tyagi^{1*}

¹ICAR-National Dairy Research Institute, Karnal-132001, India

²ICAR-Indian Veterinary Research Institute, Izatnagar-243122, India

*Corresponding author email: drnitinvet@gmail.com

Received: 07th July, 2024

Accepted: 10th September, 2025

Abstract

The experiment aimed to assess and compare the effect of bacterial inoculants, propionic acid and their combinations on the fermentation process, along with variations in pH, yeast and mould count after aerobic exposure. Maize fodder was harvested at one-third to half milk line stage (average dry matter 30.62 %). Lactic acid bacterial inoculants and their combination with chemical additives were used on a fresh matter basis for silage preparation. The treatments were control (no additive), *Lactiplantibacillus plantarum* (LP), *Limosilactobacillus fermentum* (LF), propionic acid (PA), and a combination of LP+PA, LF+PA, LP+LF and LP+LF+PA. Silage fermentation parameters and aerobic stability were evaluated after 30 days of ensiling. Additive treatment significantly reduced silage pH, whereas lactic acid, acetic acid content and dry matter recovery were increased. Lactic acid concentration was noticeably greater in the LP+LF+PA (7.91) treated silage compared to the other treatments. In comparison to the hetero-fermentative additive (LF) treated group, dry matter recovery was greater in the LP, PA and their respective combination treated groups. On various days of aerobic exposure, silage treated with the treatments of LF+PA and LP+LF+PA showed the lowest pH, yeast and mould counts. Overall, these findings indicate that the additive combination LP+LF+PA was successful in raising quality indicators, but the combination of LF+PA was more beneficial in reducing silage deterioration after aerobic exposure. The additives used in the experiment were effective in improving the silage fermentation characteristics. A combination of bacterial inoculants and chemical additives significantly decreased aerobic spoilage in maize silage. The pH values and the yeast-mould count remained more static as the exposure period increased.

Keywords: Aerobic deterioration rate, Bacterial inoculants, Fermentation quality, Maize silage

Introduction

Silage is gaining popularity as it provides a constant supply throughout the year. The basis of ensiling phenomena is the naturally occurring anaerobic fermentation of fodder in the presence of lactic acid-producing bacteria, which convert readily fermentable carbohydrates into organic acids, primarily lactic acid (Koc *et al.*, 2008). Ensiling is inherently an uncontrolled process that depends on the epiphytic microflora. Silage additives can control the course of the ensiling process and improve fermentation quality and aerobic stability (Muck *et al.*, 2018; Chauhan *et al.*, 2022). Various additive combinations are used to enhance the nutritive value of silage, but bacterial inoculants are generally used separately from chemical preservatives. Based on an analysis of various silage experiments, homofermentative lactic acid bacteria increased DM recovery during the

fermentation and increased the efficiency of the ensiling process (Oliveira *et al.*, 2017; Muck *et al.*, 2018).

It has been noted that silage high in carbohydrates with high lactic acid concentrations and low quantities of volatile fatty acids (acetic acid) are particularly susceptible to aerobic degradation (McDonald *et al.*, 1991). The main cause of the aerobic deterioration of silage is the growth of yeasts and moulds, which remain latent in anaerobic conditions and quickly multiply when exposed to air again. The obligately heterofermentative lactic acid bacteria have been proven to improve silage aerobic stability by producing acetic acid (Kleinschmit and Kung, 2006). The fermentation of undesirable bacteria is frequently inhibited by chemical additives (propionic acid), which lowers losses and stops the growth of yeasts that initiate aerobic deterioration in silages (Muck *et al.*, 2018).

Homofermentative bacterial inoculants are effective in improving the fermentation profile. In contrast, heterofermentative bacterial inoculants and chemical additives effectively increase silage's aerobic stability by inhibiting the bacteria that cause unwanted fermentation and spoilage. Consequently, indenting additives related to silage fermentation that prevent fodder deterioration have been the main focus of studies on maize silage in order to minimise losses. Additionally, not much has been researched about the effects of propionic acid, *Lactiplantibacillus plantarum*, and *Limosilactobacillus fermentum* individually or in combination on the fermentation profile and changes in pH, yeast, and mould count after aerobic exposure of maize silage. Thus, the purpose of this study was to assess how different bacterial inoculants, chemical additives, and their combinations affected the fermentation process of maize silage, as well as how pH, yeast and mould counts changed during aerobic exposure.

Materials and Methods

Silage preparation and additive treatment: The study was carried out at the National Dairy Research Institute, Karnal, Haryana, located at a height of 250 meters above sea level, with a latitude and longitude of 29° 42" N and 79° 54" E, respectively. Maize fodder was collected from the NDRI field at one-third to half the milk line stage (30.62 %DM). Fodder (leaves and stem combination) was chopped using an electrical chaff cutter to an average chop length of 1.5-2.0 cm and ensiled in a plastic container equipped with a lid that enables gas release and vacuum creation. For silage preparation, the following additives were used on a fresh basis. The bacterial inoculants include homo-fermentative bacteria (*Lactiplantibacillus plantarum*, LP), NCDC No.-344 (1×10^6 CFU g⁻¹) and hetero-fermentative bacteria (*Limosilactobacillus fermentum*, LF), NCDC No.-214 (2×10^6 CFU g⁻¹) and chemical additive propionic acid (PA) @ 0.1%. Treatments were used in the experiment that were control (no additive), LP, LF, PA (propionic acid), LP+PA, LF+PA, LP+LF and LP+LF+PA. Three plastic containers of size 2.5 to 3 kg were filled with maize fodder for each treatment after proper mixing with additives to evaluate the effect of additives individually or in various possible combinations. The containers were tightly closed, weighed and stored at room temperature. After 30 days of ensiling, the samples were analysed in triplicate for fermentation and quality parameters, microbial composition, and aerobic stability. Pre-ensiled samples were taken for chemical analysis.

Chemical composition, fermentation parameters and silage quality assessment: The chemical composition (DM, CP, OM and EE) of fresh maize fodder was determined as per the method described by AOAC

(2005). The pH of fresh fodder and silage was determined using the Eutech pH meter from the aqueous extract. The water-soluble carbohydrate (WSC) content of fresh fodder was determined by a spectrophotometer after a reaction with an anthrone reagent (Yemm and Willis, 1954). The fermentation coefficient (FC) of maize fodder was calculated using dry matter, water-soluble carbohydrates and buffering coefficient (Weissbach and Honig, 1996). The weight of the forage mass in the plastic container and its DM content at day 0 and the 30th day were used to calculate the DM recovery (DMR) (da Silva et al., 2020). Lactic acid estimation was done as per the method described by Barnett (1951). Acetic acid was estimated with the help of Nucon's gas-liquid chromatography. Flieg point was calculated from the pH value and DM of silage at the end of the fermentation period with the following equation (Moseley et al., 2015):

$$\text{Flieg point} = 220 + [(2 \times \text{DM} - 15)] - 40 \times \text{pH}$$

LAB count was done by pour-plating 10-fold serial dilutions on de Man, Rogosa, and Sharpe agar (De Man et al., 1960) from Himedia Laboratories Pvt Ltd, Mumbai, India. The Petri plates were incubated at 37°C for 48 hours to enumerate LAB in fresh maize fodder and silages. The total numbers of yeasts and moulds were determined by pour-plating 10-fold serial dilutions on potato dextrose agar that was acidified with 0.5% (vol/vol) of 85% lactic acid after autoclaving. These plates were incubated aerobically for 72 hr at 25 °C. Clostridia spore concentration in fresh silage samples was determined by the most probable number (MPN) procedure (Tabacco et al., 2009).

Fitness values (Davies et al., 2000) were modified as follows for the present experiment conditions: Modified fitness value =

$$\left(\frac{1}{1 + \left[\text{pH wtg} * \left(\frac{\text{pH}}{\text{cntl pH}} \right) \right] + \left[\text{DML wtg} * \left(\frac{\text{DML}}{\text{cntl DML}} \right) \right] + \left[\text{Amm - Nwtg} * \left(\frac{\text{AmmN}}{\text{cntl Amm-N}} \right) \right]} \right)$$

Weightage for different parameters pH- 4, DM Loss- 3, Ammonia-N 3; where wtg is weightage, cntl is control silage, DML is dry matter loss and Amm-N is ammonia nitrogen content.

Assessment of pH, yeast and moulds count after aerobic exposure: Aerobic stability was estimated by a change in pH level, yeast and mould count of silage after aerobic exposure of silage. Silage (approximately 2 kg) samples were placed in plastic buckets and kept at room temperature (25°C). The silage was sampled during the aerobic exposure (0, 2, 4, 6 and 8 days) to evaluate the pH and the numbers of yeast and mould (Dolci et al., 2011). The counting of yeasts and moulds was done on a plate of potato dextrose agar acidified with lactic acid. The plates

were incubated at 37°C for counting of yeast and moulds at 48 and 96 h, respectively, based on morphology. The plates with colonies between 30 and 300 were counted to obtain the number of colony-forming units (CFU).

Statistical design: Data of the fermentation parameters were analyzed by one-way analysis of variance (ANOVA) using SPSS (26.0) software. Using the general linear model, the aerobic exposure data were subjected to a two-way analysis of variance with the fixed effects of additives, ensilage period, and additives \times ensilage period. For LAB, yeast and mould used \log_{10} -transformed data. Pair-wise comparisons of the mean values were tested by Duncan's multiple range tests (Duncan, 1955) at the significance level ($P<0.05$).

Results and Discussion

Chemical composition of maize green fodder: The composition of the maize fodder before ensiling (Table 1) depicts that the dry matter (DM), CP, EE and TA content of maize before ensiling were 30.62, 9.46, 2.76 and 6.05%, respectively. The pH and water-soluble carbohydrate content of maize fodder were 6.05 and 12.73, respectively. The epiphytic LAB of maize fodder was 5.99 (\log_{10} CFU/g) and the yeast & mould count was 3.20 (\log_{10} CFU/g).

The fresh maize fodder had the appropriate dry matter (30-35%) and water-soluble carbohydrate content (6-12 %) required for ensiling (Tyrolová *et al.*, 2017). According to Johansson (2010), if DM is <30 % it increases the risk of bacterial and fungal spoilage. The chemical composition of maize fodder was similar to that in a previous study (Arriola *et al.*, 2011). The pH and water-soluble carbohydrates were within the range reported for maize fodder (Tyrolova *et al.*, 2017). The epiphytic LAB

count (5.99 \log_{10} CFU/gm) of maize fodder agreed with Contreras-Govea *et al.* (2013). In contrast to the present finding, Hafner *et al.* (2015) and Queiroz *et al.* (2013) reported a higher number of epiphytic microbes (lactic acid bacteria), *i.e.*, 7.04 and yeast count 5.77 \log_{10} CFU/g. Addah *et al.* (2011) observed 8.57 \log_{10} CFU/g *Lactobacillus* counts on corn silage. According to Lin *et al.* (1992), the number of epiphytic LABs on fresh plants is highly variable, ranging from less than 10 CFU/g to 10^4 CFU/g and depends on crop species, climatic conditions, maturity stage and chopping process.

Effect of additives on pH, lactic acid, acetic acid and their ratio in maize silage: The fermentation parameters of maize silage treated with the different additive combinations were evaluated after 30 days of ensiling (Table 2). The pH values significantly ($p < 0.05$) decreased and lactic acid concentration was increased in all inoculated silages compared to the control. The additives improved the fermentation characteristics, including pH and lactic acid content. The lowest lactic acid content was in control (6.23%), while the highest (7.91%) was detected in LP+LF+PA inoculated maize silage, suggesting that PA did not interfere with the action of LP and LF. The acetic acid concentration was uniformly ($p < 0.05$) higher in additive-treated silages than in untreated silage.

Acetic acid content was significantly higher in LP+LF (2.15%) and LP+LF+PA (2.15%), respectively, than control treatment. Silages treated with heterofermentative bacterial inoculant and with combinations had higher acetic acid concentration (LF, LP+LF, LP+LF+PA) and lower lactic acid to acetic acid ratio (LF, 3.16; LP+LF, 3.37; LF+PA, 3.40) compared to homofermentative and control groups. The inoculation of additives improved the fermentation characteristics, including pH and lactic acid content of maize silage. Brar *et al.* (2019) recorded pH values of different maize silage samples between 3.6 to 4.3, which were within the ideal limits. The findings of lower pH and increased lactic acid concentration in inoculated silages were in agreement with Nkosi *et al.* (2012), who studied the application of bacterial inoculants and cellulase enzyme on the fermentation quality of silage made from sorghum forage in laboratory jars. The findings from the above authors concluded that inoculation reduced pH and increased lactic acid content in inoculated silage when compared with the control. Similarly, Sucu and Filya (2006) reported higher lactic acid concentration and lower pH value in additive-treated corn silage, likewise Acosta *et al.* (2012) reported that inoculation of whole maize fodder at ensiling with commercial additive (a blend of homo and hetero-fermentative lactic acid bacteria) increased the fermentation quality with a significantly lower pH and increased concentration of lactic acid compared to untreated silage. According to

Table 1. Chemical composition (%DM), fibre fraction, microbial count and energy content of fresh maize fodder

Items	Maize fodder before ensiling	±SE
Dry matter	30.62	0.40
Crude protein	9.46	0.02
Ether extract	2.76	0.08
Organic matter	93.95	0.50
Total Ash	6.05	0.04
pH	6.05	0.01
Water-soluble carbohydrate	12.70	0.03
Fermentation coefficient	40.58	0.50
Lactic acid bacteria (\log_{10} CFU/g)	5.99	0.05
Yeast and mould (\log_{10} CFU/g)	3.20	0.04

±SE: Standard error; CFU: Colony forming unit

Table 2. Fermentation parameters of maize silage treated with the different additive combinations

Treatments	pH	Lactic acid (%DM)	Acetic acid (%DM)	L: A
Control	4.16 ^c ± 0.02	6.23 ^a ± 0.27	1.81 ^a ± 0.05	3.44 ^{ab} ± 0.21
LP	4.04 ^{ab} ± 0.02	7.13 ^{bc} ± 0.29	2.03 ^{bc} ± 0.03	3.52 ^{ab} ± 0.47
LF	4.09 ^b ± 0.01	6.66 ^{ab} ± 0.19	2.11 ^{cd} ± 0.03	3.16 ^a ± 0.05
PA	4.06 ^{ab} ± 0.01	6.88 ^{bc} ± 0.19	1.94 ^b ± 0.01	3.54 ^b ± 0.11
LP+PA	4.06 ^{ab} ± 0.01	7.18 ^c ± 0.10	1.99 ^{bc} ± 0.05	3.61 ^b ± 0.07
LF+PA	4.03 ^a ± 0.01	7.13 ^{bc} ± 0.09	2.10 ^{cd} ± 0.02	3.40 ^{ab} ± 0.07
LP+LF	4.06 ^{ab} ± 0.02	7.24 ^c ± 0.11	2.15 ^d ± 0.01	3.37 ^{ab} ± 0.07
LP+LF+PA	4.03 ^a ± 0.01	7.91 ^d ± 0.11	2.15 ^d ± 0.06	3.69 ^b ± 0.15
SEM	0.009	0.105	0.025	0.457
p-value	0.01	0.01	0.01	0.04

Mean values with different superscripts within a column differ significantly ($P<0.05$); L: A- the lactic acid to acetic acid ratio; LP: *Lactiplantibacillus plantarum*; LF: *Limosilactobacillus fermentum*; PA: Propionic acid; Other treatments are combinations of these.

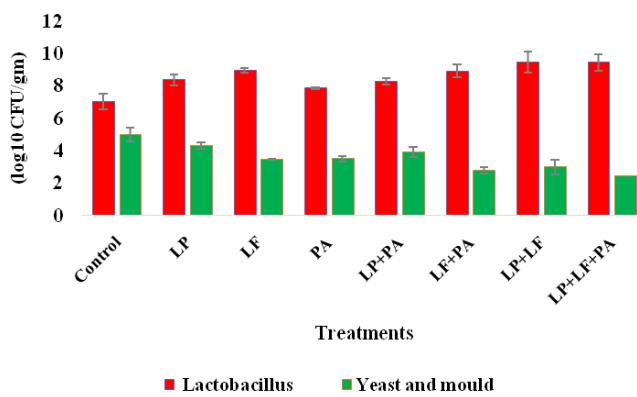
many researchers, the bacterial inoculants stimulate lactic acid production, increase the speed of pH decrease and improve preservation of sugarcane top silage (Chauhan et al., 2021; Singh et al., 2022).

Higher acetic acid concentration results in LF-treated silage, supporting the unique mode of action of heterofermentative bacteria. According to earlier observations, heterofermentative LAB species produced a blend of lactic and acetic acids (Kleinshmit and Kung, 2006; Schmidt et al., 2009). The heterofermentative bacteria produce acetic acid in addition to lactic acid by fermenting soluble carbohydrates. This mode of action results in lower lactic acid concentrations, higher acetic acid and higher silage pH in LF-inoculated silage. This finding agrees with Muck and Kung (1997), who reported that there is a slightly higher ratio of lactic acid to acetic acid in silages treated with homolactic acid bacteria inoculants, particularly legume silages, because homolactic lactic acid bacteria mainly produce lactic acid. The silage's higher lactate-to-acetate ratio indicates the fermentation was more towards homofermentative (Chauhan et al., 2021; Chauhan et al., 2023; Singh et al., 2022).

Silages treated with heterofermentative bacterial inoculants had higher acetic acid concentration and lower lactic acid ratio to acetic acid relative to untreated silage.

The present finding on a higher lactic acid to an acetic acid ratio in silage inoculated with homofermentative bacterial inoculant is supported by the work of Hashemzadeh-Cigari et al. (2014) when alfalfa silage was treated with a combination of homofermentative and propionate-producing bacterial inoculants. Similarly, Kleinschmit and Kung (2006) reported *L. buchneri*-treated silage had higher acetic acid concentrations and a lower lactic acid to acetic acid ratio than untreated silage. This might be due to the degradation of certain lactic acid to acetic acid with the production of 1, 2-propanediol and traces of ethanol by heterofermentative bacteria (Oude

Elferink et al., 2001). Ideally, the lactic acid to acetic acid ratio should not be less than 3:1; a higher ratio is ideal (Kung and Shaver, 2001).


Effect of additives on microbial count: The variations of the lactobacilli and yeast-moulds count in the maize silage were recorded (Fig. 1). The lactic acid bacteria count was significantly ($p <0.05$) higher in additive-treated maize silage as compared to the control. Among the treatments, the lactic acid bacteria (\log_{10} CFU/g) count was higher in LP+LF+PA (9.43) and LP+LF (9.47) inoculated silage. The yeast and mould counts ranged from 2.44 to 4.97 (\log_{10} CFU/g), the lowest count was observed in LP+LF+PA (2.44 \log_{10} CFU/g) and LF+PA (2.76 \log_{10} CFU/g) treated silage, respectively. The yeast and mould count was significantly ($p <0.05$) reduced in additive-treated silage compared to control silage and among the treatments, it was relatively low in silage treated with a combination of chemical and heterofermentative bacterial inoculants. Clostridia spore was not detected in silage samples. There was no significant difference in lactic acid bacterial count in silage treated with PA and bacterial inoculants exclusively and combined with PA. This suggests that PA did not adversely affect the *lactobacillus* counts of silage.

The lactic acid bacteria count was significantly higher in additive-treated maize silage than the control. This finding agrees with the findings of Cai et al. (1999) and Kumari et al. (2023) who concluded that the inoculation of silage with homofermentative LAB had beneficial effects in promoting LAB growth. Among the treatments, the lactic acid bacteria (\log_{10} CFU/g) count was higher in LP+LF (9.47) and LP+LF+PA (9.43) inoculated silage. This might be due to the synergistic effect of bacterial inoculants. The PA at the level of 0.1% did not interfere with the growth of both lactic acid bacteria groups. The LF inoculants in the present study decreased yeast

Table 3. Quality parameters of maize silage treated with varying additive combinations

Treatments	Modified fitness value	Flieg point	DM recovery (%)
Control	0.0909 ^a ± 0.0004	89.63 ^a ± 1.58	87.05 ^a ± 0.12
LP	0.1039 ^{cd} ± 0.0007	96.47 ^b ± 1.53	89.95 ^{bc} ± 0.21
LF	0.0989 ^b ± 0.0014	93.86 ^{ab} ± 1.31	87.95 ^{ab} ± 0.58
PA	0.1038 ^{cd} ± 0.0009	95.26 ^b ± 0.45	90.04 ^{bc} ± 0.38
LP+PA	0.1050 ^{cd} ± 0.0006	94.29 ^b ± 1.25	90.45 ^d ± 0.26
LF+PA	0.1011 ^{bc} ± 0.0009	96.43 ^b ± 0.83	88.33 ^{abc} ± 0.39
LP+LF	0.1030 ^{bcd} ± 0.0020	95.76 ^b ± 2.20	88.46 ^{abc} ± 1.31
LP+LF+PA	0.1069 ^d ± 0.0021	97.16 ^b ± 1.76	89.60 ^{bc} ± 1.01
SEM	0.001	0.635	0.304
p-value	0.00	0.05	0.02

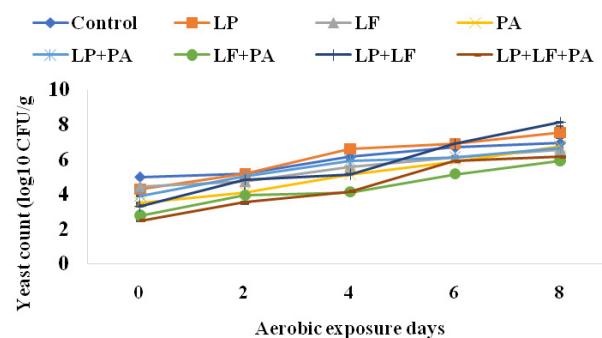
Values with different superscripts within a column differ significantly ($p < 0.05$)

Fig 1. Microbial count of maize silage treated with various additive combinations

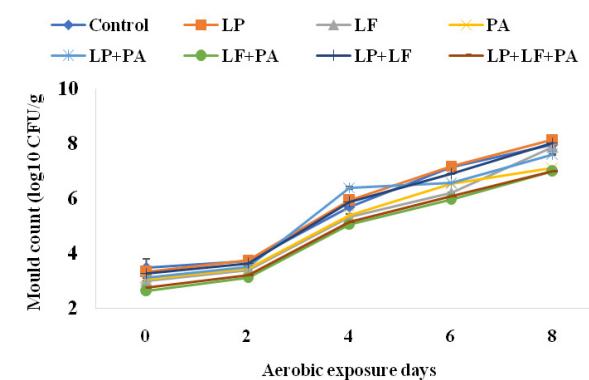
growth more effectively than LP due to the higher acetate production. Acetic acid inhibits yeasts that are responsible for aerobic spoilage might be due to the antifungal property of acetic acid. However, Danner *et al.* (2003) also identified that acetate has antimicrobial properties against undesirable microbes. The chemical additive reduces yeast population may be due to altering membrane functions (Stratford *et al.*, 2013) or cytosolic acidification (Stratford *et al.*, 2020).

Quality parameters of maize silage treated with different additive combinations: The modified fitness value, flieg point and DM recovery of the maize silage were recorded (Table 3). In comparison to the control, modified fitness value, flieg point and DMR were significantly ($p < 0.05$) higher in all additive-treated silages compared to the control. Modified fitness value

was highest in LP+LF+PA (0.1069), whereas lowest in the control (0.0909). Modified fitness value depends on the silage's pH, dry matter loss and ammonia nitrogen content. The pH point of all silages was significantly higher ($P < 0.05$) than the control, but there was no significant variation among the treatments. The flieg point depends on pH and dry matter content of the silage. The percent dry matter recovery of maize silage ranges from 87.05 (Control) to 90.45 (LP+PA). The additives used in this study effectively increased the dry matter recovery. Dry matter recovery was significantly ($p < 0.05$) higher in silage treated with homofermentative bacterial (89.95%) inoculants as compared to heterofermentative bacterial inoculants (87.95%) treated silage. Among the treatments, homofermentative and chemical additive and their combinations (LP, PA, LP+LF+PA and LP+PA) treated silage had higher dry matter recovery than heterofermentative bacterial inoculated silage. PA did not alter the LP and LF effect on DMR.


The modified fitness value is based on pH, ammonia nitrogen concentration (% of total nitrogen) and dry matter loss. The modified fitness value is indicative of the efficacy of silage additives. Kilic (1986) developed the quick method (flieg points) for quality evaluation using dry matter and pH. According to this, silage was considered very high quality when it scored between 81 and 100. Based on the flieg point evaluation, all the silages were classified as very good quality silage. Treatment with inoculants containing LF resulted in lower DMR. The probable reason might be the more extensive heterolactic fermentation and CO_2 production. The conversion of lactic acid and carbohydrates to acetic and propionic acids by heterolactic bacteria causes DML and is characterized by CO_2 production (Filya, 2003). Similarly, Arriola *et al.* (2021) and Li *et al.* (2021) reported that treatment with inoculants containing *L. buchneri* resulted in lower DMR than untreated silage and Kim *et al.* (2015) concluded that dry matter loss was higher in silage treated with a heterofermentative bacterial inoculant. Muck *et al.* (2018) reported that the dry matter loss was similar or greater in silage treated with *L. buchneri* than in the control treatment. Typically, these losses fall between 2 and 4% (Zimmer, 1981). The predominant bacterial species and the fermentable substrates influence fermentation-related DM loss. The LAB that ferments glucose with a homofermentative fermentation pathway produces mostly lactate and no DM loss occurs, while the LAB that ferments glucose by a heterofermentative fermentation pathway produces 1 mole of carbon dioxide per mole of glucose, resulting in a loss of 2 to 4% (Zimmer, 1981). Better DMR from a chemical additive in high DM silage was observed previously (Silva *et al.*, 2016), and this is probably because yeasts' fermentative activity was suppressed (McDonald *et al.*, 1991).

Changes in pH and microbial count after aerobic exposure of maize silage: The pH values on different aerobic exposure days (Day 0, 2nd, 4th, 6th and 8th) of additive-treated maize silage were recorded (Table 4). All the silages had low pH values at the zero-day of aerobic exposure and after that pH value increased as the aerobic exposure days increased ($p < 0.05$). The pH was significantly ($p < 0.05$) lower in silages treated with heterofermentative bacterial inoculants than homofermentative bacterial inoculants on 4th, 6th, 8th day of aerobic exposure. The lowest mean value of pH (4.59) at different aerobic exposure days was observed in silage treated with LF+PA followed by LP+LF+PA inoculated (4.72) and LF treated (4.90) silage.


The yeast count of additive-treated maize silage during aerobic exposure was recorded (Fig. 2). Propionic acid and LF-inoculated silage exhibited the lowest yeast counts while simultaneously exhibiting the highest aerobic stability. PA and LF improved aerobic stability over untreated and LP-inoculated silage ($p < 0.05$). The yeast growth was higher ($P < 0.05$) in LP, followed by control, LF and PA inoculated silage.

The mould count (\log_{10} CFU/g) of additive-treated maize silage on different aerobic exposure days was recorded (Fig. 3). The lowest mould count was observed in LF+PA (4.74 \log_{10} CFU/g) treatment. Silage deterioration indicators were pH change and an increase in yeast and mould numbers.

A lower pH value after aerobic exposure to silage indicates that the more aerobic stability or growth of silage spoilage bacteria is less. Silage treated with a combination of heterofermentative bacterial inoculants, chemical additive (LF+PA) followed by chemical additive (PA) and heterofermentative bacterial inoculants silage had lower mean pH values on different aerobic

Fig 2. Effect of additives and aerobic exposure days on yeast count (\log_{10} CFU/g) of maize silage

Fig 3. Effect of additives and aerobic exposure days on mould count (\log_{10} CFU/g) of maize silage

exposure. As the aerobic exposure time increases, the pH of the silage increases; this might be because of many yeasts' species' growth, which degrades the lactic acid into CO_2 and H_2O under aerobic conditions and the degradation of lactic acid causes a rise in silage pH,

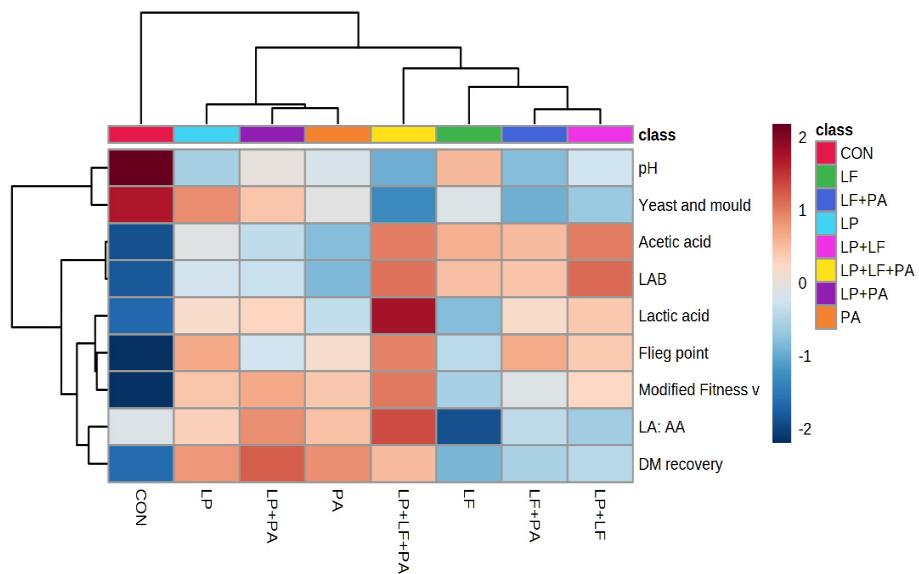
Table 4. Effect of additives and combinations on pH of maize silage on various aerobic exposure days

Treatment	Aerobic exposure days					Mean	SEM	Significance		
	0	2	4	6	8			P	T	P×T
Control	4.16 ^{dA}	4.49 ^{bcB}	5.53 ^{fC}	5.71 ^{dD}	6.17 ^{dE}	5.21 ^F	0.208	0.01	0.01	0.01*
LP	4.04 ^{cA}	4.59 ^{cB}	5.63 ^{fC}	5.84 ^{eC}	6.31 ^{eD}	5.28 ^G				
LF	4.09 ^{cdA}	4.39 ^{bcB}	5.02 ^{eC}	5.26 ^{bD}	5.74 ^{bE}	4.90 ^C				
PA	4.06 ^{cA}	4.31 ^{bbB}	5.42 ^{eC}	5.58 ^{cD}	5.76 ^{bE}	5.02 ^D				
LP+PA	4.06 ^{cA}	4.35 ^{bbB}	5.55 ^{fC}	5.75 ^{deD}	5.97 ^{cE}	5.14 ^E				
LF+PA	4.03 ^{cA}	4.27 ^{bbB}	4.58 ^{bcC}	4.89 ^{aD}	5.17 ^{aE}	4.59 ^A				
LP+LF	4.06 ^{baA}	4.43 ^{dbB}	5.15 ^{dcC}	5.43 ^{gdD}	6.00 ^{feE}	5.01 ^D				
LP+LF+PA	4.02 ^{aA}	4.31 ^{abB}	4.69 ^{aC}	5.03 ^{fdD}	5.58 ^{deE}	4.72 ^B				
Mean	4.07 ^a	4.39 ^b	5.20 ^c	5.44 ^d	5.84 ^e					

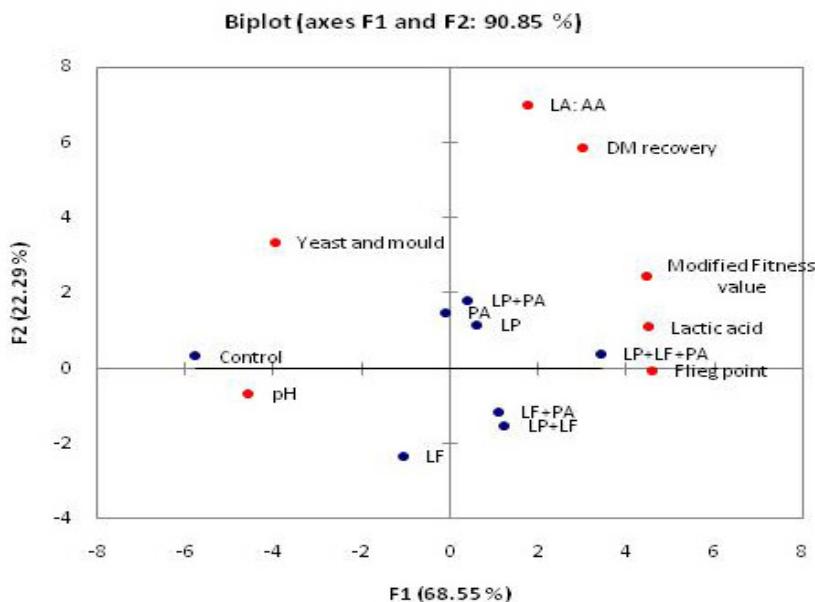
P: Aerobic exposure period; T: Treatment; P×T: Interaction of period and treatment; * $p < 0.05$ significant; SEM: Standard error of the means;

^{a-e} Values with distinct small letters indicate statistically significant variations between treatment in the same aerobic exposure days ($p < 0.05$); ^{A-G} Significant variations aerobic exposure days in the same treatment are shown by values with distinct capital letters ($p < 0.05$)

which in turn triggers the growth of many other spoilage organisms (McDonald *et al.*, 1991). Silage treated with homofermentative bacterial inoculants was less aerobic stable than control and heterofermentative bacteria-treated silage. These findings agree with Filya and Sucu (2007). This might be due to homofermentative bacteria inoculated silage containing more lactic acid and less acetic acid than heterofermentative bacterial inoculants treated silage. Yeast and mould used lactic acid as a substrate and converted it into CO_2 and other products, subsequently rapidly increasing the silage pH.


The yeast count was lower in LF+PA-treated silage because of the organic acids (acetic acid and propionic acid) that inhibit yeast growth. Chemical additives improved aerobic stability over that of untreated and LP-inoculated silage. Silage treated with LPhad has lower aerobic stability because of more lactic acid production or a lower lactic acid to acetic acid ratio. Lactic acid fermentation is usually associated with reduced formation of acetic acid; this finding agrees with Wilkinson and Davies (2013). Yeasts are commonly the initiators of aerobic deterioration (Pahlow *et al.*, 2003); decreased aerobic stability of silages inoculated with LP may be explained by greater yeast numbers. Inoculation with LP may also result in lower levels of acetic acid production, which might hasten yeast development and diminish aerobic stability. According to Carvalho *et al.* (2015), lactate-assimilating yeasts *Candida spp.*, *Hansenula spp.*, *Pichia spp.*, *Issatchenka spp.* and *Saccharomyces spp.* are mainly responsible for the aerobic deterioration of silage. The stability of silage after aerobic exposure can be zero if the yeast count exceeds more than $>6 \log_{10} \text{CFU/g}$ of silage (Chauhan *et al.*, 2023). The administration of heterofermentative LAB during ensiling enhanced the acetate concentration and in turn, the aerobic stability of silage increased (Danner *et al.*, 2003; Filya & Sucu, 2007). Like a prior study, a high acetate content in LF silages led to a lower yeast count than LP silages (Ranjit and Kung, 2000).

Heterofermentative bacterial inoculants were more effective in reducing mould growth than homofermentative bacterial inoculants due to acetic acid production. *Lactobacillus buchneri* was effective in improving aerobic stability in various crops, including corn silage, high-moisture corn and alfalfa (Kung *et al.*, 2003). Similarly, treatment with chemical additives improved legumes, grasses, corn silage and high-moisture corn's aerobic stability (Knicky and Spörndly, 2015; Kung *et al.*, 2018). Improved aerobic stability in LF inoculated silage due to more acetic acid production by *Limosilactobacillus fermentum*, whereas improved stability from PA was from the propionic acid availability in silage. Short-chain organic acids such as acetic acid and PA can be fungistatic and or fungicidal because they lower the pH of yeast cells (cytosolic acidification), inhibiting glycolysis and


decreasing the concentration of ATP (Krebs *et al.*, 1983). Chemical additive (sorbates and benzoates) directly alters membrane functions (Stratford *et al.*, 2013) in some yeasts, in addition to cytosolic acidification (Stratford *et al.*, 2020). The increased rate of deterioration when silages were treated with the only homolactic acid type of LAB is because this type of fermentation reduces the accumulation of compounds (e.g., acetic acid) with antifungal properties (Muck *et al.*, 2018). Undissociated acetic acid, along with other short-chain fatty acids, is also known to suppress the growth of yeasts and moulds, but lactic acid is mainly ineffective against these initiators of the aerobic degradation process (Danner *et al.*, 2003; Wilkinson and Davies, 2013). Propionic acid is effective in reducing yeast and moulds, which are responsible for the aerobic deterioration in silages. Antimycotic action of PA increases as pH drops, making it a prime choice for boosting corn silage's aerobic stability in low-pH environments (Beck, 1975). According to Chauhan *et al.* (2023), if mould count reaches up to $7 \log_{10} \text{CFU/g}$ of silage, then the nutritional quality of the silage is reduced and it can be considered as aerobically deteriorated.

Cluster analysis of maize silage treated with various additives: To facilitate the categorization and understanding of maize silage with different treatments, a hierarchical clustering analysis was conducted. This analysis aimed to identify similarities and differences among various parameters and group them accordingly. A heat map was generated using a Euclidean distance matrix of quantitative values (Fig. 4). Each cell represents a specific parameter value for a particular silage sample in the heat map. The intensity of colour in each cell indicates the concentration level of that parameter in the sample. Higher colour intensity suggests a greater concentration of a specific parameter. The pattern observed in the heat maps aligned with the findings previously discussed in this study, reinforcing the consistency of the results. The heat map clearly predicts a strong positive correlation of LP+LF+PA along with Fleig point and positive correlation with LA:AA, Acetic acid and LAB, while it is negatively correlated with pH of silage.

Principal Component Analysis (PCA) was applied to analyse the dynamic variance of the microbial population and fermentation quality under different conditions. The results (Fig 5) indicate that the first two components account for 68.55 and 22.29% of the total variance, respectively. In the PCA plot, the x-axis represents the results of the first component, while the y-axis represents the second component. The overview plot displays the median intensities of each cluster, with darker lines indicating higher intensities. The control treatment of silage forms a distinct group that is separate from the other treatments. This indicates that the control samples have significantly different values compared to the other

Fig 4. Heat map of hierachal clustering analysis of quality parameters of maize silage for different treatments [Coloured cells correspond to concentration value (the cell's increased colour intensity indicates a larger concentration of particular parameters value in the silage sample); Samples in column and quality parameters in row]

Fig 5. Principal component analysis (PCA) plot of different variables of additive-treated maize silage

seven treatments. These findings align well with the results of the present study, which include chemical and quality profiling of the silage samples.

The observations further highlight that the other treatments are relatively distant from each other, indicating greater variability in the considered characteristics between the control and the remaining treatments. LP+LF+PA stands out with higher scores along with F1. This suggests that the LP+LF+PA combination shows promising results in improving the fermentation

quality of maize silage. Based on our study, LP+LF+PA emerges as the most favourable additive combination for enhancing the fermentation quality of maize silage.

Conclusion

The additives effectively improved the maize silage quality parameters, quality attributes after aerobic exposure of silage. Lactic acid bacterial inoculants stayed effective in the presence of propionic acid. Among the treatments, the combination of LP+LF+PA was effective

in improving the fermentation quality of silage, while the combination of LF+PA has shown more potential to reduce the yeast and moulds after aerobic exposure.

Acknowledgment

The authors thank the Director, ICAR-National Dairy Research Institute, Karnal, India, for all the necessary facilities provided during the study.

References

Acosta Aragón, Y., Jonas Jatkauskas and V. Vrotniakiene. 2012. The effect of a silage inoculant on silage quality, aerobic stability, and meat production on farm scale. *International Scholarly Research Notices*, 2012.

Addah, W., J. Baah, P. Groenewegen, E. K. Okine and T.A. McAllister. 2011. Comparison of the fermentation characteristics, aerobic stability and nutritive value of barley and corn silages ensiled with or without a mixed bacterial inoculant. *Canadian Journal of Animal Science* 91: 133-146.

AOAC. 2005. *Official Methods of Analysis*. 17th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA.

Arriola, K. G., S. C. Kim and A. T. Adesogan. 2011. Effect of applying inoculants with heterolactic or homolactic and heterolactic bacteria on the fermentation and quality of corn silage. *Journal of Dairy Science* 94: 1511-1516.

Arriola, K.G., A.S. Oliveira, Y. Jiang, D. Kim, H.M. Silva, S.C. Kim, F.X. Amaro, I.M. Ogunade, H. Sultana, A.A.P. Cervantes and Ferrareto. 2021 Meta-analysis of effects of inoculation with *Lactobacillus buchneri*, with or without other bacteria, on silage fermentation, aerobic stability and performance of dairy cows. *Journal of Dairy Science* 104:7653-7670.

Barnett, A. J. G. 1951. The colorimetric determination of lactic acid in silage. *Biochemical Journal* 49: 527.

Beck, T. 1975. The effect of ensiling agents on aerobic deterioration. *Das WirtschaftFutter* 4: 8-12.

Brar, N.S., B. Kumar, J. Kaur, A. Kumar, H.K. Verma, R. Singh and P. Singh. 2019. Qualitative study of corn silage of cattle farms in subtropical conditions of Indo-Gangetic plains. *Range Management and Agroforestry* 40: 306-312.

Cai, Y., Y. Benno, M. Ogawa and S. Kumai. 1999. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. *Journal of Dairy Science* 82: 520-526.

Carvalho, B. F., C. L. S. Ávila, M. G. C. P Miguel, J. C. Pinto, M. C. Santos and R.F. Schwan. 2015. Aerobic stability of sugarcane silage inoculated with tropical strains of lactic acid bacteria. *Grass and Forage Science* 70: 308-323.

Chauhan, N., D. Singh, N. Kumari, and N. Tyagi. 2021. Impact of lactic acid bacteria and enzymes on the fermentation processes of sugarcane tops silage at a particular time interval. *The Pharma Innovation Journal* 10: 332-336.

Chauhan, N., N. Kumari, V. Mani, D. Pradhan, G.R. Gowane, S. Kumar and N. Tyagi. 2023. Effects of *Lactiplantibacillusplantarum*, *Limosilactobacillusfermentum*, and propionic acid on the fermentation process of sugarcane tops silages along with variations in ph, yeast and mould count after aerobic exposure. *Waste and Biomass Valorization* 1-16.

Chauhan, N., N. Kumari, D.B. Mishra, V. Mani and N. Tyagi. 2022. Dynamic changes in microbial succession and fermentation profiles of sugarcane tops silage treated with exogenous enzymes and lactic acid bacteria following various duration of ensiling. *Sugar Tech* 25:1-11.

Contreras-Govea, F.E., R.E. Muck, G.A. Broderick and P.J. Weimer. 2013. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. *Animal Feed Science and Technology* 179: 61-68.

da Silva, E.B., R. M. Savage, A.S. Biddle, S.A. Polukis, M.L. Smith and L. Kung Jr. 2020. Effects of a chemical additive on the fermentation, microbial communities, and aerobic stability of corn silage with or without air stress during storage. *Journal of Animal Science* 98: 1-11.

Danner, H., M. Holzer, E. Mayrhuber and R. Braun. 2003. Acetic acid increases stability of silage under aerobic conditions. *Applied and Environmental Microbiology* 69: 562-567.

Davies, Z. S., R.J. Gilbert, R.J. Merry, D.B. Kell, M.K. Theodorou and G.W. Griffith. 2000. Efficient improvement of silage additives by using genetic algorithms. *Applied and Environmental Microbiology* 66:1435-1443.

De Man, J.C., D. Rogosa and M.E. Sharpe. 1960. A medium for the cultivation of lactobacilli. *Journal of Applied Bacteriology* 23: 130-135.

Dolci, P., E. Tabacco, L. Cocolin and G. Borreani. 2011. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films. *Applied and Environmental Microbiology* 77: 7499-7507.

Duncan, D. B. 1955. Multiple range and multiple F tests. *Biometrics* 11: 1-42.

Filya, I. 2003. The effect of *Lactobacillus buchneri* and *Lactobacillus plantarum* on the fermentation, aerobic stability and ruminal degradability of low dry matter corn and sorghum silages. *Journal of Dairy Science* 86: 3575-3581.

Filya, I. and E. Sucu. 2007. The effect of bacterial inoculants and a chemical preservative on the fermentation and aerobic stability of whole-crop cereal silages. *Asian-Australasian Journal of Animal Science* 20: 378-384.

Hafner, S. D., M. Windle, C. Merrill, M.L. Smith, R.B. Franco

and L. Kung Jr. 2015. Effects of potassium sorbate and *Lactobacillus plantarum* MTD1 on production of ethanol and other volatile organic compounds in corn silage. *Animal Feed Science and Technology* 208: 79-85.

Hashemzadeh-Cigari, F., M. Khorvash, G.R. Ghorbani, E. Ghasemi, A. Taghizadeh, S. Kargar and W.Z. Yang. 2014. Interactive effects of molasses by homofermentative and heterofermentative inoculants on fermentation quality, nitrogen fractionation, nutritive value and aerobic stability of wilted alfalfa (*Medicago sativa* L) silage. *Journal of Animal Physiology and Animal Nutrition* 98: 290-299.

Johansson, S., 2010. Whole-crop maize silage for growing dairy bulls- effects of maturity stage at harvest and feeding strategy. Swedish University of Agricultural Sciences, Department of Animal Environment and Health Section of Production Systems.

Kim, D.H., S.M. Amanullah, H.J. Lee, Y.H. Joo and S.C. Kim. 2015. Effect of microbial and chemical combo additives on nutritive value and fermentation characteristic of whole crop barley silage. *Asian-Australasian Journal of Animal Sciences* 28: 1274-1280.

Kilic, A. 1986. Silo feed (instruction, education and application proposals). *Bilgehan Press*, 327.

Kleinschmit, D. H. and L. Kung Jr. 2006. A meta-analysis of the effects of *Lactobacillus buchneri* on the fermentation and aerobic stability of corn and grass and small-grain silages. *Journal of Dairy Science* 89: 4005-4013.

Knicky, M. and R. Spörndly. 2015 Use of a mixture of sodium nitrite, sodium benzoate, and potassium sorbate in aerobically challenged silages. *Journal of Dairy Science* 98: 5729-5734.

Koc, F., L. Coskuntunaand and L. Ozduven. 2008. The effect of bacteria+ enzyme mixture silage inoculant on the fermentation characteristic, cell wall contents and aerobic stabilities of maize silage. *Pakistan Journal of Nutrition*, 7: 222-226.

Krebs, H. A., D. Wiggins, M. Stubbs, A. Sols and F. Bedoya. 1983. Studies on the mechanism of the antifungal action of benzoate. *Biochemical Journal* 214: 657-663.

Kumari, N., N. Chauhan, D.B. Mishra and N. Tyagi. 2023. Effect of bacterial inoculants and their combination with enzymes and chemical additives on fermentation characteristics and ensiling period of maize silage. *Range Management and Agroforestry* 44: 167-174.

Kung Jr, L., C.C. Taylor, M.P. Lynch and J.M. Neylon 2003. The effect of treating alfalfa with *Lactobacillus buchneri* 40788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows. *Journal of Dairy Science* 86: 336-343.

Kung Jr, L., M.L. Smith, E.B. da Silva, M.C. Windle, T.C. da Silva and S. A. Polukis 2018. An evaluation of the effectiveness of a chemical additive based on sodium benzoate, potassium sorbate, and sodium nitrite on the fermentation and aerobic stability of corn silage. *Journal of Dairy Science* 101: 5949-5960.

Kung, L. and R. Shaver. 2001. Interpretation and use of silage fermentation analysis reports. *Focus on Forage* 3: 1-5.

Li, Y., E. B. da Silva, C. O. Novinski and L. Kung jr. 2021. Effect of microbial and chemical additives on the fermentation and aerobic stability of alfalfa silage ensiled at 2 dry matters and subjected to air stress during storage. *Journal of Animal Science* 99: 174.

Lin, C., K. K. Bolen, B.E. Brent and D. Y. C. Fung. 1992. Epiphytic lactic acid bacteria succession during the pre-ensiling and ensiling periods of alfalfa and maize. *Journal of Applied Bacteriology* 73: 375-387.

McDonald, P., A.R. Henderson and S.J.E. Heron. 1991. *The Biochemistry of Silage*. 2nd edn. Chalcombe Publication. Cambrian Printers, Ltd.

Moselhy, M. A., J. P. Borba and A. E. Borba. 2015. Improving the nutritive value, *in vitro* digestibility and aerobic stability of *Hedychium gardnerianum* silage through application of additives at ensiling time. *Animal Feed Science and Technology* 206: 8-18.

Muck, R. E. and L. Kung Jr. 1997. Effects of silage additives on ensiling. *Silage: Field to feedbunk*. Northeast Regional Agricultural Engineering Service (NRAES), Ithaca, New York, USA.

Muck, R. E., E. M. G. Nadeau, T. A. McAllister, F. E. Contreras-Govea, M. C. Santos and L. Kung Jr. 2018. Silage review: Recent advances and future uses of silage additives. *Journal of Dairy Science*. 101: 3980-4000.

Nkosi, B. D., P.V. Vadlani, K. Brijwani, A. Nanjunda and R. Meeske 2012. Effects of bacterial inoculants and an enzyme on the fermentation quality and aerobic stability of ensiled whole-crop sweet sorghum. *South African Journal of Animal Science* 42: 232-240.

Oliveira, A. S., Z. G. Weinberg, I. M. Ogunade, A. A. Cervantes, K. G. Arriola, Y. Jiang and A.T. Adesogan. 2017. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. *Journal of Dairy Science* 100: 4587-4603.

Oude Elferink, S. J., J. Krooneman, J.C. Gottschal, S.F. Spoelstra, F. Faber and F. Driehuis, 2001. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by *Lactobacillus buchneri*. *Applied and Environmental Microbiology* 67: 125-132.

Pahlow, G., R.E. Muck, F. Driehuis, S. J. O. Elferink and S.F. Spoelstra. 2003. Microbiology of ensiling. *Silage Science and Technology* 42: 31-93.

Queiroz, O. C. M., K. G. Arriola, J. L. P. Daniel and A.T. Adesogan. 2013. Effects of 8 chemical and bacterial additives on the quality of corn silage. *Journal of Dairy Science* 96:5836-5843.

Ranjit, N. K. and L. Kung Jr. 2000. The effect of

Lactobacillus buchneri, *Lactobacillus plantarum*, or a chemical preservative on the fermentation and aerobic stability of corn silage. *Journal of Dairy Science* 83: 526-535.

Schmidt, R. J., W. Hu, J. A. Mills and L. Kung Jr. 2009. The development of lactic acid bacteria and *Lactobacillus buchneri* and their effects on the fermentation of alfalfa silage. *Journal of Dairy Science* 92: 5005-5010.

Silva, V. P., O.G. Pereira, E.S. Leandro, T.C. Da Silva, K.G Ribeiro, H.C. Mantovani and S.A. Santos. 2016. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. *Journal of Dairy Science* 99: 1895-1902.

Singh, D., T.A. Johnson, N. Tyagi, R. Malhotra, P.V. Behare, S. Kumar and A. K. Tyagi. 2022. Synergistic effect of LAB strains (*Lb. fermentum* and *Pediococcus acidilactis*) with exogenous fibrolytic enzymes on quality and fermentation characteristics of sugarcane tops silage. *Sugar Tech* 25: 1-13.

Singh, D., N. Tyagi, S. Yadav, B. Sharma and N. Chauhan. 2022. Growth performance, nitrogen balance and blood biochemical parameters on feeding TMR diet containing sugarcane tops silage supplemented with lactic acid bacteria inoculants and exogenous fibrolytic enzymes in crossbred calves. *Indian Journal of Animal Research* 56: 1119-1125.

Stratford, M., C. Vallières, I.A. Geoghegan, D. B. Archer and S. V. Avery. 2020. The preservative sorbic acid targets respiration, explaining the resistance of fermentative spoilage yeast species. *Msphere* 5: 273-280.

Stratford, M., G. Nebe-von-Caron, H. Steels, M. Novodvorska, J. Ueckert and D.B. Archer. 2013. Weak-acid preservatives: pH and proton movements in the yeast *Saccharomyces cerevisiae*. *International Journal of Food Microbiology* 161: 164-171.

Sucu, E. and I. Filya. 2006. Effects of homofermentative lactic acid bacterial inoculants on the fermentation and aerobic stability characteristics of low dry matter corn silages. *Turkish Journal of Veterinary and Animal Sciences* 30: 83-88.

Tabacco, E., S. Piano, L. Cavallarin, T. F. Bernardes and G. Borreani 2009. Clostridia spore formation during aerobic deterioration of maize and sorghum silages as influenced by *Lactobacillus buchneri* and *Lactobacillus plantarum* inoculants. *Journal of Applied Microbiology* 107: 1632-1641.

Tyrolová, Y., L. Bartoň and R. Loučka, 2017. Effects of biological and chemical additives on fermentation progress in maize silage. *Czech Journal of Animal Science* 62: 306-312.

Weissbach, F., and H. Honig. 1996. About the prediction and control of course of fermentation in the ensilage of green fodder from extensive cultivation. *LandbauforschungVolkenrode* 1: 10-17.

Wilkinson, J. M. and D. R. Davies. 2013. The aerobic stability of silage: key findings and recent developments. *Grass and Forage Science* 68: 1-19.

Yemm, E. W. and A. Willis. 1954. The estimation of carbohydrates in plant extracts by anthrone. *Biochemical Journal* 57: 508-514.

Zimmer, E. 1981. Efficient silage systems. In *Proceedings of Conference on Forage Conservation in the 80's (Occasional Symposium No.11) by British Grassland Society* (01-01-1981), UK.