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Abstract
Globally though yellow maize is more popular, white maize has its own niche in specific parts around the world including 
Central America, southern United States, northern part of South America, Mexico, Africa and some parts of Asia. However, 
efforts on white maize improvement are very scarce, particularly in India. The aim of the study was to characterize white maize 
populations for yield traits and to establish heterotic patterns using molecular markers. Twenty seven white maize populations 
comprising of 16 from CIMMYT, Mexico, 6 from Srinagar and 5 from NBPGR were characterized for yield traits, viz., NRPE 
(number of rows per ear), NKPR (number of kernel per row) and HSWT (hundred seed weight), and also characterized using 
SSR markers.  Six populations were identified for higher NRPE; four populations for higher NKPR and five populations with 
high HSWT. Structure analysis identified three major populations, viz., P1, P2 and P3 consisting five, eleven and ten pure sub-
populations, respectively. Principal Coordinate Analysis (PCoA) revealed that all the populations were distributed across the four 
quadrangles of the scatter plot. Efforts on heterotic grouping identified six populations for NRPE in HG-I (Heterotic Group-I), 
and three populations in HG-II (Heterotic Group-II). Further, all Indian populations were grouped in cluster A whereas CIMMYT 
populations are distributed in two different clusters (B and C). The populations were identified for different yield traits belonging 
to different heterotic groups. The inbred lines derived from these identified populations will have higher yield and will produce 
superior hybrids upon crossing inbreds from opposite heterotic groups.
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Introduction 
Maize is the third most important cereal after wheat and 
rice in India and is mainly used as poultry and animal 
feed. Though yellow maize is globally more popular, 
white maize is important in many parts including Central 
America, southern United States, northern part of South 
America, Africa and some parts of Asia (Sendin et al., 
2018). México ranks fifth in maize production in the world 
(FAOSTAT, 2020), and white maize represents about 90% 
of it (Ramírez-Vega et al., 2022). Further, the demand and 
popularity of white maize is gaining worldwide due to 
increase in consumer preferences of white maize and 
Hispanic and Latino populations (Uriarte-Aceves and 

Sopade, 2021). In India, though yellow maize is more 
popular, white maize is consumed as food in few parts of 
the country (Gujarat, Rajasthan, Chhattisgarh, Himachal 
Pradesh, and Jammu & Kashmir) particularly as ‘chapatti’ 
or flat bread. There are very few reports on improvement 
and characterization of white maize germplasm. 
Understanding the genetic variation in the available 
germplasm is an important component of crop breeding 
programmes (Das et al., 2021; Venadan et al., 2023; Yathish et 
al., 2024; Hundal et al., 2024). The diversity and relatedness 
among the inbred lines derived from various sources 
is crucial for breeding strategies to maximize the yield 
potential (Singh et al., 2023). The information about the 
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relationship among the base materials is also critical for 
developing new superior inbred lines, and to choose the 
right testers for hybrid development. The development of 
heterotic hybrids in maize involves deriving homozygous 
inbred lines and their classification into heterotic groups 
(HGs) and thereafter crossing them from opposite HGs. 
Similarly, the source populations can also be classified 
into different HGs, so that the homozygous inbred lines 
developed from these populations maintain the heterotic 
pattern as of their original populations. HGs can be 
defined as a germplasm collection, upon crossing with 
the germplasm of an external group, tends to exhibit a 
higher degree of heterosis compared to crosses of the 
same group. The genetic diversity among the heterotic 
groups is maintained and germplasm is improved within 
the heterotic group through recycling the superior inbred 
lines and recombining them within a population through 
reciprocal recurrent selection (Mikel, 2008). Inbred lines 
developed through this strategy from different populations 
generally give rise to productive hybrids upon crossing. 
The heterotic groups are well established in temperate 
maize germplasm, such as the three predominant heterotic 
groups are, viz., Stiff Stalk (SS), Non-Stiff Stalk (NS), and 
Iodent (IO) in the USA (Beckett et al., 2017). However, HGs 
of tropical maize germplasm including Indian maize 
germplasm, that too of white maize germplasm, is not 
well defined. The development of productive inbred 
lines in hybrid breeding is equally important to reduce 
the cost of hybrid seed production. The best-performing 
elite inbred lines are frequently used as parents in a 
hybrid breeding program, however, for complex traits 
like yield, the line per se performance has been reported 
as a poor predictor of hybrid performance. Hence, simply 
inherited traits less affected by non-additive effects can 
be used. In this context, yield-contributing traits like 
number of rows per ear (NRPE), number of kernels 
per row (NKPR) and hundred Seed Weight (HSWT) 
are reported to have high heritability (Xiao et al., 2016).
These are also positively correlated with grain yield in 
maize and can be indirectly selected to derive superior 
inbred lines for hybrid development (Magar et al., 2021). 
The present experiment was designed to establish the 
heterotic pattern in the exotic maize germplasm received 
from CIMMYT, Mexico along with the locally available 
Indian maize populations; and to characterize these 
populations in terms of yield contributing traits and 
molecular diversity to identify superior inbred lines for 
the future hybrid breeding programme.

Materials and Methods

Germplasm collection: Total 27 white maize populations 
comprising 16 collected from CIMMYT, Mexico, six from 
Srinagar and five from ICAR-NBPGR, New Delhi were 
utilized in the study.

Experimentation and phenotypic evaluation: The 
experiment was conducted during the spring season of 
2019 at Ladhowal farm of ICAR-IIMR (30°97 N′, 75°75′ 
E), Ludhiana. The weather parameters during the crop 
season were recorded (Fig 1). The populations were 
evaluated in randomized complete block design (RCBD) 
with two replications. Each of the populations were 
grown over 16 rows, the row length was maintained 
at 3 m with row-to-row distance of 65 cm and plant to 
plant of 20 cm. Standard agronomic package of practice 
was used to raise the healthy crop. Individual plants 
of each of the populations were characterized for yield 
contributing traits, viz., number of rows per ear (NRPE), 
number of kernels per row (NKPR) and hundred seed 
weight (HSWT).

Molecular characterization: Genomic DNA was 
isolated using standard CTAB protocol with minor 
modification (Murray and Thompson, 1980). The 120 
random simple sequence repeat (SSR) markers distributed 
uniformly throughout the maize genome were selected 
from maize GDB (www.maizegdb.org) for genetic 
characterization of populations. Total volume of the PCR 
reaction mixture was 11 microliter (μl) which consisted of 
(i) 2.5 μl genomic DNA (20 ng/μl), (ii) 4 μl master mix, (iii) 
1.5 μl molecular grade water and (iv) 3 μl primer pairs. 
PCR products were amplified by following the protocol 
of Das et al. (2019). The amplified products were resolved 
by using 4% SFR (Super Fine Resolution) agarose at 120 
V for 4 hours. Out of 120 SSR markers used, 61 markers 
were found to be polymorphic among the populations.

Statistical analysis: Analysis of variance (ANOVA) 
and Duncan’s Multiple Range Test (DMRT) test for 
yield contributing traits was carried out using the SPSS 
software (SPSS Inc. Released 2007). The data matrix of SSR 
markers was used for genetic diversity and population 
structure analysis. Total number of alleles, gene diversity, 
major allele frequency, heterozygosity and polymorphic 
information content (PIC) values were calculated using 
PowerMarker V.3.0 (Liu and Muse, 2005). Principal 

Fig 1. The weather parameters during the crop season at 
Ludhiana
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coordinate analysis (PCoA) and Neighbour-Joining tree 
with 1000 bootstraps was generated using DARwin-5.0 
(Perrier and Flori, 2003). The overall population structure 
of these populations was determined by Structure 
v.2.3.4 software (Pritchard et al., 2000). The project was 
run with 5000 burning periods run length followed by 
50,000 Markov Chain Monte Carlo (MCMC) replications, 
admixture ancestry model and correlated allele 
frequency. The hypothetical number of subgroups (K) 
was set from 1 to 10 with three runs for each K. 

Results and Discussion 

Variability for yield contributing traits: Analysis 
of variance (ANOVA) revealed significant variation for 
yield contributing traits among the populations (Table 
1). Mean NRPE among the 27 populations ranged from 
11.39 to 15.33. Similarly, large variation for NKPR (22.99 
- 34.64) and HSWT (25.46-35.13 gm) was also observed in 
these populations. Most promising populations for NRPE 
were POBLAC 64 (15.33), POBLAC 23 (14.90), POBLAC 29 
(14.75), SMP 50 (14.72), POBLAC 22 (14.72), POBLAC 42 
(14.68) and POBLAC 92 (14.52l) (Table 2). The populations, 
viz., POBLAC 22 (34.64), POBLAC 29 (33.48), NBPGR 23 
(34.44) and POBLAC 44 (34.17) recorded highest NKPR, 
whereas the most promising populations for HSWT were 
POBLAC 44 (35.13 gm), POBLAC 102 (33.63 gm), POBLAC 
47 (33.41 gm), POBLAC 92 (32.87 gm), KDM3008 (32.70 
gm) and KDM 111 (32.70 gm). POBLAC 29 and POBLAC 
22 recorded higher NRPE as well as NKPR, similarly, 
POBLAC 44 recorded higher NKPR and HSWT, whereas 
POBLAC 92 recorded higher NRPE and HSWT. 
The box plot analysis revealed that though seven 
populations had higher NRPE values, six of them, viz., 
POBLAC 64, POBLAC 23, POBLAC 29, SMP 50, POBLAC 
22 and POBLAC 42 recorded higher median values as 
well (Fig 2). All four populations (POBLAC 22, POBLAC 
29, NBPGR 23, POBLAC 44) recorded a high median 
value for NKPR whereas five (POBLAC 44, POBLAC 
102, POBLAC 47, POBLAC 92, KDM3008) of the six 
populations recorded a high median value for HSWT. 
Chen et al. (2016) reported similar variation for NRPE 
(12.3-17.0, mean 14.56) whereas much lower variation for 
HSWT (19.55-29.95 g, mean: 23.46 g) and higher range 
for NKPR (28.79-51.8, mean 41.7) was reported. Zeng 
et al. (2022) reported much higher variation for HSWT 
(9.75 to 40.04 g with mean 25.18 g) as well as for NKPR 
(5.33 to 53.50 with mean 26.46) in the association panel of 
291 inbred lines. Similarly, higher range for NRPE were 
reported by Liu et al. (2016a) in the RIL (241) population 
(4 to 18) and Liu et al. (2015) (9.3 to 19.7 with an average 
of 13.3 ± 1.6) in the diverse inbred panel (368). 
The main job of maize breeders is to derive high yielding 
inbred lines (Liu et al., 2016b). The yield components of 
maize can be summarized by the following equation: 

Y=PN×E/P×KRN×KPR×KW; where Y is grain yield (g m-2), 
PN: plant number (m-2), E/P: ears per individual plant, 
KRN:kernel row number, KPR: kernel per row, KW; 
mean weight per kernel (g) (Engledow and Wadham, 
1923). Further, grain yield in maize is dependent on 
the relationship between the source produce and the 
potential of the sink to assimilate this produce. The sink 
in the maize foundation lines should be of high-effect 
and high-capacity (Liu et al., 2016b). From the equation it 
is evident that breeders could pay more attention to ear 
characters of maize as the sink capacity selection index. 
Hence, the 27 maize populations characterized for yield 
contributing traits in the current study provide a good 
opportunity to derive foundation inbred lines. 

Correlation among yield contributing traits: As the 
populations, POBLAC 29, POBLAC 22, POBLAC 44 and 
POBLAC 92 recorded higher values for more than one 
yield trait; correlation coefficient values for these traits 
were estimated particularly for these populations (Fig 
3). A significant negative, though small, correlation was 
present between NRPE and NKPR in POBLC 29 (r=-0.15; 

Table 1. Analysis of variance for yield traits

SOV DF SS MS F Significance
Population 
(NRPE) 26 61.87 2.3796 49.2949 <0.001

Replication 1 0.0294 0.0294 0.609 0.4422

Residual 26 1.2551 0.0483 - -
Population 
(NKPR) 26 408.4698 15.7104 19.3735 <0.001

Replication 1 13.0439 13.0439 16.0853 <0.001

Residual 26 21.084 0.8109 - -
Population 
(HSWT) 26 290.1192 11.1584 3.7009 <0.001

Replication 1 47.9403 47.9403 15.9001 <0.001

Residual 26 78.3925 3.0151 - -

Fig 2. Boxplot analysis of 27 white maize populations
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p = 0.01) but the correlation coefficient between NRPE 
and NKPR was insignificant in the population POBLAC 
22 (r=-0.03; P=0.68). A significant positive correlation 
between NKPR and HSWT was present in POBLAC 
44 (0.12; P=0.05). The correlation coefficient between 
NRPE and HSWT was negative but insignificant (r=-0.08; 
P=0.15) in the population POBLAC 44. Huo et al. (2016) 
failed to find any significant association between NRPE 
and NKPR in the two bi-parental populations. Similarly, 
Magar et al. (2021) also did not find any significant 
association between NRPE, NKPR and HSWT in ten 
open pollinated varieties (OPVs). Presence of positive 
correlation helps the simultaneous improvement of both 
the traits, whereas negative correlation prevents the 
simultaneous improvement. As the correlation between 
NRPE and NKPR was insignificant in POBLAC 22 and 
positive between NKPR and HSWT in POBLAC 44, these 
populations provide an opportunity for simultaneous 
improvement for both the traits and derive inbred lines 
with more than one yield contributing traits.

Fig 3. Correlation among yield contributing traits in 
selected populations

Table 2. Population mean for yield contributing traits of the populations
S. N. Population N Pedigree Source NRPE NKPR HSWT
1 POP 5 204 Gurez, Tangdar Local Srinagar 13.27fg 32.45ijkl 29.50cde

2 POOL 27 232 Subtropical temperate early white flint CIMMYT 13.88hij 29.69ef 28.81 cd

3 POBLAC 102 242 Precoz Blanco (tropical early white flint/dent) CIMMYT 13.23fg 28.66de 33.63 m

4 POBLAC 29 271 Tuxpeño Caribe CIMMYT 14.75mn 33.48lmno 31.56 hi

5 POBLAC 64 236 Templado Blanco Dentado QPM CIMMYT 15.33o 32.22hijkl 30.52fg

6 POBLAC 42 225 ETO Illinois CIMMYT 14.68mn 32.96jklm 30.43efg

7 POBLAC 30 265 Blanco Cristallino-2 CIMMYT 14.37klm 31.01gh 29.63 def

8 POBLAC 91 249 Templado Blanco Cristalino CIMMYT 13.78hi 29.27 def 32.03hijk

9 POOL 16 287 Tropical early white dent (TEWD) CIMMYT 13.90hij 28.06 cd 31.45 h

10 KDM 3006 187 CML 540 x CML 442-B-B-B-B Srinagar 11.39a 31.36ghi 31.32gh

11 NBPGR 23 191 IC-0334948 NBPGR 12.97ef 34.44 no 29.35 cd

12 POBLAC 34 261 Blanco Subtropical CIMMYT 14.01ijk 30.46fg 28.56c

13 NBPGR 54 166 IC-0334955 NBPGR 12.55d 32.81jkl 31.54 hi

14 NBPGR 10 212 IC-0334936 NBPGR 14.26jkl 31.37ghi 31.81hij

15 SMP 54 206 KML225 x NAI 174-B-B-B Srinagar 11.78b 33.31klmn 30.45efg

16 POBLAC 44 251 (AED) Tuxpeño CIMMYT 13.56gh 34.17mno 35.13n

17 POBLAC 47 242 Templado Blanco Dentado QPM CIMMYT 14.34klm 31.62ghij 33.41lm

18 SMP 50 162 CML 440 x  CML-349-B-B-B-B Srinagar 14.72mn 31.27ghi 30.31ef

19 POBLAC 23 207 Blanco Cristallino-1 CIMMYT 14.90n 31.97hijk 25.18a

20 POBLAC 22 215 Mezcla Tropical CIMMYT 14.72mn 34.64o 32.57jkl

21 POOL 28 139 Subtropical Temperate Early While Dent CIMMYT 13.53gh 31.70ghij 32.45ijkl

22 KDM3008 187 CML-545 x CMl-540-B-B Srinagar 12.62de 29.27 def 32.70jklm

23 NBPGR 21 222 IC-0334973 NBPGR 12.48cd 22.99a 26.98b

24 POBLAC 92C0 271 Blanco Dentado CIMMYT 14.52lmn 27.13bc 32.87klm

25 POBLAC 101 176 Super Precoz Blanco (tropical extra-early white) CIMMYT 11.63ab 26.32 b 30.45efg

26 NBPGR 24 136 IC-0334974 NBPGR 14.15ijkl 26.27b 25.46 a

27 KDM 111 192 GM-6 x Mahi Dhawal Srinagar 12.15c 31.90hij 32.70jklm
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population are different (Liu and Muse, 2005). Similar 
range of gene diversity was also reported by earlier 
workers, viz., 0.08 to 0.76 (Das et al., 2019), 0.15 to 0.79 
(Muthusamy et al., 2015), 0.04 to 0.72 (Zunjare et al., 2015) 
and 0.23 to 0.84 (Choudhary et al., 2016). Low value of 
major allele frequency of any marker is indicative of the 
highly diverse nature of the locus among the selected 
genotypes and similar results were reported by Kumar 
et al. (2022) and Muthusamy et al. (2015). The variation 
observed in PIC value is corroborated in earlier studies 
by Muthusamy et al. (2015), Das et al. (2019) and Kumar et 
al. (2022). These findings indicated that the selected SSR 
markers were effective in providing valid estimates of 
genetic diversity parameters for these maize populations.
The plot generated using delta K against estimated K 
showed a clear peak at the true value of K = 3 (Fig 4). 
Structure analysis divided the 27 populations into three 
major-populations [P1 (Red), P2 (Green) and P3 (Blue)] 
(Fig 5). As per the membership coefficient (Q) value, 
populations revealed a Q value ≥0.60 was considered 
pure, whereas populations with Q<0.60 were regarded 
as admixture populations (Khan et al., 2020). The three 
major populations, viz., P1, P2 and P3 consisted of five, 
11 and 10 pure sub-populations, respectively based on 
Q ≥0.60. However, POBLAC 47 and POBLAC 22 of P1 
share a gene flow from P2, similarly POBLAC 42 and 
POBLAC 30 of P2 share gene flow from P1 and POBLAC 
22 from P3. There is also gene flow from P1 to NBPGR 24, 
NBPGR 10, KDM3008, KDM 3006 and P3 to KDM 3006 of 
P2. Population KDM 111 showed much complex genetic 
architecture and shared gene pool of all three populations 
and was considered as admixture. The mean Fst value 
of P1, P2 and P3 were 0.34, 0.32 and 0.31, respectively 
which indicated very high differentiation among the 
populations (Fig 6). 
Structure analysis was also done from the marker data 
which revealed three major populations. The Fst value 
of populations provides an estimate of the degree of 
differentiation among the populations. Fst value can 
range from 0 (populations can interbreed freely) to 
1 (populations do not share any genetic diversity). 
Generally, Fst value<0.05 is considered as small, 0.05 to 
0.15 as moderate, 0.15 to 0.25 as great and >0.25 as very 
great as established by Hartl and Clark (1997). Small α 

Genetic diversity and population structure: A total 
of 165 alleles were amplified by the 61 SSR markers with 
a mean of 2.73 per marker across the populations. The 
number of amplified alleles varied from two to five, 
where 32 molecular markers amplified 2 alleles and five 
SSRs amplified five alleles. Most of the markers recorded 
high heterozygosity with a mean of 0.21. Twenty-two 
markers recorded heterozygosity of > 0.21. The gene 
diversity varied from 0.08 (umc1264) to 0.76 (umc1772) 
with an average of 0.39. The major allele frequency for 
the markers ranged from 0.35 (umc1375) to 0.96 (umc1264) 
with an average of 0.71. The PIC values ranged from 
0.07 (umc1264) to 0.73 (umc1772) with a mean of 0.22. 
The SSRs, viz., umc1261, phi053, umc2214, umc1459 and 
umc1375 recorded PIC >0.5. The larger number of alleles 
found in these 27 populations may be attributed to the 
existing heterogeneity of the populations. The mean 
heterozygosity (0.21) across the populations was also 
moderately high than the earlier reports such as 0.04 by 
Das et al. (2019) and 0.14 by Devi et al. (2023) in inbred 
lines whereas higher average heterozygosity (0.35) was 
reported by Mathiang et al. (2022) in the 37 landraces. 
This trend is obvious as populations and landraces are 
diverse in nature, heterozygous and heterogeneous 
whereas the inbred lines are expected to be homozygous 
and homogeneous. Gene diversity is defined as the 
probability that two randomly chosen alleles from the 

Fig 4. Delta K against estimated K showed a clear peak at 
the true value of K (3)

Fig 5. Population structure of white maize populations 
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suggests that most of the individuals are essentially from 
one population or another, while α > 1 indicates that most 
of the individuals are admixed in nature. The mean α 
value of the populations was 0.038, indicating very few 
individuals with admixture as supported by Q value.

Genetic relationships among the populations: The 27 
populations were grouped into three major clusters, viz., 
A, B and C (Fig 7). Cluster A consisted of 11 genotypes, 
whereas cluster B and cluster C had seven and nine 
populations, respectively. The maximum distance was 
observed between POBLAC 101 of cluster C and SMP 54 
of cluster A (0.64) followed by POBLAC 101 cluster C and 
SMP 50 cluster A (0.63) and the least genetic distance was 
observed between NBPGR 54 and POP 5 of cluster A (0.10) 
with overall mean genetic distance of 0.39. The average 
genetic distance of individual clusters was calculated, and 
clusters A, B and C had a mean genetic distance of 0.28, 
0.24 and 0.36, respectively. The most distant populations 
were KDM 11 and SMP 54 (0.43), POBLAC 34 and POBLAC 
22 (0.31), and POOL 28 and POBLAC 101 (0.51) in cluster 
A, B and C, respectively. The populations, viz., NBPGR 
54 and POP 5 (0.10) inA and POBLAC 23 and POBLAC 
102 (0.12) in cluster B shared the least genetic distance, 
whereas in cluster C, POBLAC 42 and POBLAC 44, as well 
as POBLAC 32 and POBLAC 90, revealed lowest genetic 
distance (0.17). Principal Coordinate Analysis (PCoA) was 
also used to further elucidate the genetic relationships of 
these 27 populations (Fig 8). Genotypes were distributed 
across the four quadrangles of the scatter plot. Quadrant 
1, 3 and 4 had 11, nine and six genotypes, respectively. 
However, quadrant 2 had only one genotype.
Out of these 27 populations, 18 populations, viz., POP 
5, POOL 27, POBLAC 102, POBLAC 29, POBLAC 64, 
POBLAC 30, POBLAC 91, KM3006, POBLAC 34, NBPGR 
54, NBPGR 10, SMP 54, POBLAC 22, KDM3008, NBPGR 
21, POBLAC 92, POBLAC 101 and NBPGR 24 followed 
same pattern of grouping in structure, cluster and 
PCoA analysis. POBLAC 30 POBLAC 91, POBLAC 92 
and POBLAC 101 can be assigned as overall Heterotic 
Group I (HG-I: Structure population: 3, PCoA quadrant: 
3, Cluster group: C), POOL 27, POBLAC 102, POBLAC 
29, POBLAC 64, POBLAC 34 and POBLAC 22 as 
Heterotic Group II (HG-II: Structure population: 2, PCoA 

Fig 6. Histogram of distribution of Fst values

Fig 7. Cluster analysis of white populations

Fig 8. PCA analysis of 27 white maize populations

quadrant: 1, Cluster group: B) and POOL 27, POBLAC 
102, POBLAC 29, POBLAC 64, POBLAC 34 and POBLAC 
22 as Heterotic Group III (HG-III: Structure population: 
3, PCoA quadrant: 2, Cluster group: A). However, the 
rest of the nine populations revealed different patterns 
of grouping. POBLAC 42, POBLAC 44, POBLAC 47 and 
POOL 28 revealed similar grouping in structure and 
PCoA analysis; POOL 16, NBPGR 23 and POBLAC 23 
in cluster and PCoA analysis; SMP 50 showed similar 
pattern in structure and PCoA analysis but remained 
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isolated in PCoA analysis. KDM 111 revealed admixed 
nature in structure and also revealed different patterns 
in cluster and PCoA analysis. 

Utilization of the populations identified for 
yield traits in breeding programme: Out of the 
six populations identified for NRPE, one population 
(POBLAC 92) represented HG-I and three population, 
viz., POBLAC 29, POBLAC 64 and POBLAC 22 belonged 
to HG-II. Similarly, only one (POBLAC 29) of the four 
populations identified for NKPR represented HG-
II, whereas out of the six populations identified for 
HSWT, one each belonged to HG-I (POBLAC 92), HG-
II (POBLAC 102) and HG-III (KDM3008). Hence, the 
populations identified for different yield traits belonging 
to different heterotic groups provide a good opportunity 
to derive superior heterotic inbred lines. The inbred 
lines from populations with higher NRPE of HG-II are 
expected to produce heterotic hybrids upon crossing 
with inbred lines derived from POBLAC 92 of HG-I 
and KDM3008 of HG-III with higher HSWT. Similarly, 
inbred lines from populations POBLAC 92 with higher 
NRPE of HG-I are expected to produce heterotic 
hybrids upon crossing with inbred lines derived from 
POBLAC 29 with higher NKPR and POBLAC 102 with 
higher HSWT of HG-II. Further, the information on the 
heterotic groups of these populations will help to design 
the breeding programme with prior knowledge and less 
resources (Madankar et al. 2023).

Conclusion
In the current study, the white maize populations 
were characterized for yield traits. Out of these 27 
populations, those identified with higher NRPE, NKPR 
and HSWT were six, four and five, respectively. These 
populations could serve as good sources for deriving 
inbred lines with higher values of NRPE, NKPR and 
HSWT. The heterotic pattern of these populations 
was also determined which classified these identified 
populations in different HGs. Hence, inbred lines 
derived from populations with superior yield traits 
belonging to different HGs are expected to give rise to 
heterotic maize hybrids.
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