
Range Mgmt. & Agroforestry 38 (2) : 158-164, 2017

ISSN 0971-2070

Satellite and field radiometry for the estimation of biomass production in a grassland site
in state of Durango, Mexico

Gutiérrez-Guzmán Ulises Noel1*, Edmundo Castellanos-Perez1, J. Santos Serrato-Corona1, Juan José Martínez-

Ríos1 and  Isaías Chairez-Hernández2

1Universidad Juárez del Estado de Durango, Venecia, Municipio de Gómez Palacio, Durango, México
2Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Instituto Politécnico Nacional. Unidad Durango, México.
*Corresponding author e-mail: ulisesnoelg@yahoo.com.mx
Received: 12th September, 2016             Accepted: 4th October, 2017

Abstract
The  accurate  and rapid estimation o f biomass  is
important for the management of rangelands. The
objective of this study was to find regression models to
predict aerial biomass at a grassland site in the state of
Durango, Mexico. For this purpose, samples of above
ground biomass and normalized difference vegetation
index values were obtained from two sources (NDVI-
field radiometer and NDVI-MODIS) during the growing
season of 2011 and 2013. Using 2011 data (n=180), the
model Ln (Y) = β0 + β1X + β2X2 was found with the NDVI-
field radiometer, R2 = 0.54, and Y 0̂.3 = β0 + β1X + β2X2 with
NDVI-MODIS, R2 = 0.81. Model validations were carried
out comparing regression coeff icients of 2011 and 2013
models, there was not signif icant dif ference with t
(P>0.05). However, model with NDVI-MODIS had 77
outliers; therefore any prediction must be considered
cautiously.

Keywords: Biomass, Field radiometer, MODIS, NDVI
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Introduction
The study of biophysical variables of vegetation grassland
ecosystem is  valuab le fo r researchers  and land
managers especially when they are faced with a changing
global climate that presents new threats to ecosystem
stability (Wylie et al., 2012; Ghosh and Mahanta, 2014).
The most important among the study parameters of
vegetation is the production of biomass. Commonly
accepted method for its measurement is to harvest and
weigh plants directly in a given unit area (Sorensen et
al., 2012). However, this technique is labor intensive and
expensive, so it is necessary to implement the use of
reliable technique for the determination of vegetation
biomass (Casiano and Bolaños, 2010).

Primary  productivity  is  a  function of  photosynthetically

active radiation intercepted by vegetation (Monteith, 1977)
and this variable  can be  es timated  through the
information captured at dif ferent wavelengths. Remote
sensors allow acquiring radiometric images of the
Earth’s surface from aerial or spatial sensors (Chuvieco,
2010). The use of remote sensing in combination with
the use of geographic information systems, allows the
assessment of natural resources and can provide
alternative sources of data collection for estimating
biomass in large areas of grasslands (Chang et al.,
2001; Di Bella et al., 2009). Another option for radiometric
values of  in  s itu vegetation is  the use of  f ie ld
spectroradiometers, which allow information f rom
objects at short distances from the ground without any
material in contact (López, 2012). Traditionally, the main
functions of the f ield radiometry have been serving as a
link between laboratory measurements and reflectance
gathered by sensors aboard aircraft and satellites.
However, it has also gained importance itself  for
accuracy, reliability and the relative abundance of
info rmation generated  and has  led to  numerous
ramifications operating data (Vaughan, 2001).

In the last three or four decades, many vegetation indices
(VI) calculated from spectral data from satellite and f ield
remote sensing, have been developed in order to obtain
info rmation on the status of  vege tation and  i ts
characteristics. A plant cover in good health, has a spectral
signature that is characterized by the contrast between
the band of the red (between 600 and 700nm), which is
largely absorbed by the leaves, and the infrared (between
700 and 1100nm), which is mostly ref lected (Carvacho
and Sánchez, 2010). These indices do not directly
measure vegetation productivity or forage availability, but
have a close relationship with these variables that allows
use for analysis (González et al., 2009).

Normalized Difference Vegetation Index (NDVI) has been
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wide ly used in ag ronomic  explanations  (Hunt and
Miyake, 2006). It meets three important features for its
implementations, mathematical simplicity, ease of
interpretation and its power to normalize the spectral
response of vegetation systems (Thoma et al., 2010). In
addition achieves a high degree of correlation with
various parameters of interest of vegetation, including
grassland biomass (Gaitan et al., 2013; Jin et al., 2011;
Ouyang et al., 2012) which allow estimating the amount
of forage at the end of the growing season and planning
strategies for the dry season grazing (Medina et al., 2009).

The objective of this study was to develop models of
annual linear regression between NDVI data obtained
from imaging radiometer MODIS and NDVI data obtained
from f ield spectroradiometer; both as predictor variables,
and the production of biomass obtained by direct cutting
as a response variable in northern state of Durango.

Materials and Methods
Study area: The research was conducted in the years
2011 and 2013. The study area was established on the
site La Cieneguilla Hidalgo municipality located in north-
central part of the state of Durango, 25 ° 39 ‘ 35" N and
104 ° 39’ 23" W (Fig 1). The predominant climate in the
area is steppe, semiarid temperate (BS1 kw) and semi-
arid warm (BWhw), the annual average temperature is
20° C (Espinoza et al., 2000). The soil is sandy loam
and clay-sandy loam with a slope of 1 to 8 percent.
Hydrologically the study site is encompassed in the
Hydrologic Region No. 35 Mapimí and RH 36 Nazas-
Aguanaval.

Fig 1. Location of study area La Cieneguilla in northern
Durango State, Mexico

The  historical  annual  rainfall  in  the study area  is 457

mm, about 80% of the rainfall occurs between the
months o f June  to  September irregularly, values
accumulated rainfall for the years 2011 and 2013 was
139 and 382 mm, respectively (SAGARPA-INIFAP). The
vegetation type is classified as medium open grassland
with dominance of Bouteloua gracilis (Willd. Ex Kunth)
Lag. ex Griffiths with different associations oak-juniper
(Juniperus spp.- Quercus spp.) as part of the forest and
mesquite (Prosopis spp.) as part of the bush (SEMARNAT,
2009). The site is used for the production of weaning
calves under conditions of extensive pasture grazing by
cow-calf system intended primarily for sale to feeders in
the United States.

Field radiometry: A permanent sampling site (PSS) was
established using two perpendicular lines of 1,300 m
each one. Nine sampling stations of 1 ha (SS) were
distributed on these lines. The SS were spaced every
200 m in a sequence from north to south and from east
to west. Each SS was divided into four quadrants
measuring 50 by 50 m each quadrant (Fig 2). In each
quadrant a sampling point was found randomly and a
circumference of 1.6 m in diameter made of polyurethane
was used to delimit the sampling area. Random points
(36) were located in the PSS each sampling date.
Measurements in 2011 were in April 27, July 04 August
02, September 06 and November 10 (n = 36 sampling
date). In 2013 information in the same place on June 08
July 27, September 01, October 22 and November 28
with the same number of samples were recorded.

Fig 2. Schematic representation of the permanent
sampling site (PSS) showing nine sampling stations
(SS) and 36 biomass sampling points (BSP)
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With the polyurethane circumference on the soil, a
multispectral radiometer was located 3.20 m above of
the center po int of the circumf erence, and  three
observations were taken and an average was recorded.
The radiometer was a crop scan Model MSR5 5-band of
the electromagnetic spectrum 485, 560, 660, 830 and
1650 nm. Data were collected in the data logger of the
radiometer. After the radiometric measurements were
made, the above ground herbaceous biomass was
harvested above 1 cm above the soil. At the same time,
the closest images to the sampling dates of the NASA
MODIS sensor were used.  As it is known, these images
have a spatial resolution of 250 m and taken in intervals
of 16 days.

Calculation of NDVI: The design of the multispectral
radiometer (MSR) allows almost simultaneous inputs
of the flux of incident solar radiation on vegetation surface
and the acquisition of the fraction of reflected solar energy
(ref lectance) by the object of study after the incidence of
the same solar energy on the surface (Yao et al., 2013).
From the reflectance values acquired in the five bands of
the radiometer, only Band 3 (660 nm) and Band 4 (830
nm) were used for the calculation of the NDVI value by
the equation of Rousse et al. (1974):
NDVI = (NIR - R) / (NIR + R)
Where:
NDVI = Normalized difference vegetation index
NIR = Near infrared (Band 4)
R = Red band (Band 3)

The surface reflectance MODIS (MOD 09) was calculated
from the level of the bands 1, 2, 3, 4, 5, 6, and 7 (centered
on 648, 858, 470, 555, 1240, 1640, and 2130 nm,
respectively). Bands 1 and 2 were used to calculate
MODIS-NDVI with the aforementioned formula. Once
calculated NDVI values of each of the satellite images,
the value was extracted by overlaying the corresponding
number o f point’s georef erenced sampling points
biomass of each of the sampling stations obtaining a
total of 36 values.

Statistical analysis: For the analysis of the information
obtained STATGRAPHICS XVII Centurion Version XVI.I
program was used. Skewness and Kurtosis tests were
used to determine normal distribution of the biomass
samples. Since the normal distribution was not found in
the data, Ln transformation was used or Y value raised
to less than one in the regression models. Data of 2011
was used to find regression models, and data of 2013
was  used  to  validate  the  models  found  in  2011. One

model was where the dry weight of the aerial herbaceous
biomass was the dependent variable and the NDVI
estimated with radiometry data in the f ield was the
independent variable. The other mode l had  the
herbaceous biomass as dependent variable and NDVI
ob tained from the  MODI S rad iometry was  the
independent variable.

Results and Discussion
Biomass production: The average biomass production
was different in the two years of measurements (Table
1).The results were expected since there was a significant
dif ference in precipitation in the two years of study.
Yahdjian and Sala (2008) mentioned that the variation in
the productivity of grassland is directly related to the high
inter-annual variability in the amount and seasonal
distribution of precipitation.

Table 1. Statistical summary of biomass production for
2011 and 2013 on the site La Cieneguilla, Durango,
Mexico
Estimator                  Biomass 2011         Biomass 2013
Count
Average (g m-2)
Standard deviation
Coeff. of variation (%)
Minimum
Maximum
Stnd. skewness
Stnd. kurtosis

180
29.29
22.47
76.72

0
93.20

4.79
-0.26

180
44.15
30.02
67.98

0
109.95

2.28
-2.25

The values of the Skewness and Kurtosis tests were
found outside the range (-2 to +2) indicating significant
deviat ions  from normality. Tsutsumi et al. (2007)
mentioned that although many studies may implicitly
assume that samples can be approximated a the normal
distribution, general ly cannot apply the  no rmal
distribution to the biomass in pas tures, since  the
frequency distribution of biomass shows a “ long tail “,
as was the case in our data.

NDVI-field radiometer regression model:  The model
Ln (Y) = β0 + β1X + β2X2  was found. Studentized residuals
with the predicted values for each model were verif ied.
The 2011 regression model had 30 outliers which were
eliminated. In the 2013 regression, 25 outliers were
eliminated. Regression models without outliers, both for
2011 and for 2013 data, met Gauss-Markov assumptions
(Table 2; Fig 3).
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Adjusted R2 = 0.5352

β0

β1X
Β2X2

β0

β1X
Β2X2

0.8888
11.8767

-10.5460

0.7655
12.6075
-11.1926

0.3540
2.4155
3.7492

0.2076
1.2875
1.7252

2.5102
4.9166

-2.8128

3.6863
9.7918

-6.4875

0.0131
0.0000
0.0056

0.0003
0.0000
0.0000

D. N.
I.

H.

D. N.
I.

H.

Yes
Yes
Yes

Yes
Yes
Yes

Parameter         Error std     Statistical t  Value-P      Gauss Markov (Residual)

Adjusted R2 = 0.8091

Ln(Y2011)

Ln(Y2013)

D. N. = Distribution normal; I.= Independence; H. =Homoscedasticity

Table 2. Parameters of the regression models of 2011 and 2013, the weight of aboveground biomass estimated
using NDVI-field radiometer values in La Cieneguilla, Durango, Mexico

Fig 3. Relationship between predicted and observed
values of the regression models for 2011 and 2013
estimated from NDVI-f ield radiometer  values in La
Cieneguilla, Durango, Mexico

The regression model found in this study was similar to
that found by Psomas et al. (2011), which was generated
with biomass data obtained at four sampling dates
during the growing season and f ield radiometric data at
dry pasture sites in central Europe, the best models were
obtained from the multiple linear regression of the NDVI
and the logarithm of biomass production, with the highest
R2 value of 0.65. On the other hand, Deb et al. (2014)
found that both dry fodder yield and grain yield of Sorghum

Adjusted R2 = 0.8134

β0

β1X
Β2X2

β0

β1X
Β2X2

D. N.
I.

H.

D. N.
I.

H.

Yes
Yes
Yes

Yes
Yes
Yes

Parameter         Error std     Statistical t  Value-P      Gauss Markov (Residual)

Adjusted R2 = 0.6374

Ln(Y2011)

Ln(Y2013)

1.3324
8.7877

-9.2276

0.684282
9.02028

-6.77787

0.1755
1.1931
1.8646

0.3528
2.0849
2.8074

7.5915
7.3655

-4.9487

1.9393
4.3263

-2.4142

0.0000
0.0000
0.0000

0.0544
0.0000
0.0170

Table 3. Parameters of regression models of 2011 and 2013, the weight of aboveground biomass values estimated
using NDVI-MODIS radiometry data in La Cieneguilla, Durango, Mexico

D.N.=Distribution normal; I.=Independence; H.=Homoscedastic ity
bicolor can be estimated using nonlinear function
through reflectance values based on the normalized
difference vegetation index and aerial biomass, with the
maximum positive correlation coefficient r = 0.61. These
variations in the models found in the studies mentioned
might be due to the variability conditions at different
pasture sites, therefore, it suggests the generation of
prediction models of biomass at particular level.

NDVI-MODIS regression model: The model found was
Y 0̂.3 = β0 + β1X + β2X2. In 2011, outliers (35) were removed,
by 2013 a total of 77 values were eliminated. Models
without the aberrant data, both for 2011 and 2013 data
met Gauss-Markov assumptions (Tables 3; Fig 4).
Because there were a lot of eliminated aberrant data,
the information of this regression model should be taken
cautiously. The disadvantage of the NVDI-MODIS data
was that the pixel scale was too large, and it gave the
same value in an area of 62500 m2.

The results found in this work for the conditions of this
region were ve ry s imilar to those found by other
researchers. In a study in the Xilingol region of northern
China, which is dominated mainly by the temperate
desert steppe, among the statistical models established
for the estimation of biomass and NDVI values, the power
function model of the biomass with the best value of R2 =

Ulises Noel et al.
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0.604 (Jin et al., 2014). In other study in the rangelands
of Zacatecas, Mexico; on forage production related NDVI
from images “SPOT Vegetation”, Medina et al. (2009)
adjusted a model of multiple regression for the three
years together that lasted the experiment, they obtained
an R2 value of 0.66 (P<0.01), with which forage production
for all areas of pasture were estimated by applying the
generated model.

Fig 4. Relationship between predicted and observed
values of the regression models of 2011 and 2013 using
estimated values of the NDVI- MODIS, La Cieneguilla,
Durango, Mexico

Models validation: A comparison was made between
the regression coefficients of the models 2011 and 2013
for NDVI radiometry values estimating biomass and for
NDVI-MODIS values estimating the same dependent
variable.  No signif icant difference was found in both
years of study according to the “t” Student (Tables 4 and
5), showing that the 2011 models were validated with
information taken in 2013. Again, the validation of the
NVDI-MODIS regression model must be considered
cautiously due to the large number of aberrant data taken
away. However, this methodology and equation form used
have to be contemplated in further studies using satellite
radiometry with smaller scale.

Table 4. Comparison of the coefficients of the models
2011 and 2013 field radiometry with herbaceous biomass
t (180 + 180-30-25-2 = 303, P<0.05) = 1.967

2011
2013
t student

0.8888
0.7655

0.3004 n.s.

11.8767
12.6075

0.2669 n.s.

-10.5460
-11.1926

0.1566 n.s.

β0                               β1X                     β2X
2

n.s.: not significant at P<0.05.

production (Tucker, 1979; Hunt and Miyake, 2006), also
aboveground biomass of rangelands was changed very
quickly within a few weeks, especially when livestock
was  used  and  was strongly inf luenced  by rainf all
(Baruch, 2005; Scanlon et al., 2005). In this study, the
estimated biomass models indicated a good fit in terms
of quality even when the biomass model and changes
every year, models were developed using the annual
fluctuation of two contrasting years. The models found in
2011 and 2013 were statistically equal. The dif ference in
the amount of rain between one year and another was
243 mm (the average for the region is 475 mm). Gutiérrez-
Guzmán et al. (2015) in a study on the site La Cieneguilla,
used regression models to determine the relationship
between biomass production herbaceous and estimated
by using digital images, even when precipitation was
different on vegetation cover and they found no statistical
significance between the 2011 and 2013 models.

Table 5. Comparison of the coefficients of the models
2011 and 2013 MODIS radiometer with herbaceous
biomass t (180 + 180-37-77-2 = 244, P<0.05) = 1.967

In previous to estimate the biomass of grassland by
remote sensing attempts, through the NDVI, had the
disadvantage that the rate was only sensitive to green
vegetation, with the best results in the peaks of increased

2011
2013
t student

β0                               β1X                     β2X
2

1.3324
0.6842

1.6447 n.s.

8.7877
9.0202

0.0967 n.s.

-9.2276
-6.7778

0.7268 n.s.
n.s.: not significant at P<0.05.

Using data from multi-temporal satellite to measure inter-
annual changes in biomass of grasslands in semi-arid
environments is common, although the selection of
appropriate image acquisition dates is problematic for
estimating biomass of grasslands (Casady et al., 2013).
In our study, we ensured that the time of field sampling
and remote sensing data acquisition was consistent to
the maximum extent possible, this approach improved
the sensitivity of remote sensing data to reflect the plant
biomass information. When comparing models with the
two sources of origin of NDVI, the field radiometer best
explained the variability of biomass harvested MODIS
data. F itzgerald (2010) mentioned that the use of
radiomete rs  spec trum f ie ld  ensured high spatial
resolution for small scales of analysis. In the run to find
suitable models, a greater number of observations of
atypical MODIS-NDVI data were removed.

Conclusion

The regression models showed that it is feasible to
estimate the dry weight of the biomass, even under
conditions of inter-annual variability in the same pasture
site. The use of the f ield radiometer ensured a high
spatial resolution adequate for the scale of the analysis,

Estimation of biomass production in grassland



finding an adequate prediction model. The regression
model constructed with biomass data and NDVI-MODIS
values, even with the limitation in spatial resolution, can
serve as a basis for further studies with high spatial
resolution satellite imagery.
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