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Abstract
Crop yield forecasts are extremely useful in formulation of
policies regarding stock, distribution and supply of
agricultural produce. In this paper, an effort was made to
develop regression models for biomass and seed yield
production of dual purpose sorghum (Sorghum bicolor)
incorporating canopy spectral reflectance indices collected
during three different growth stages of the crop in 2011
and 2012. The results showed that the correlation between
the reflectance at each wavelength and the aboveground
biomass has the maximum negative correlation coefficient
(r= - 0.21, p< 0.05) at 690nm. The r values changed sharply
from 690nm to 750nm. The maximum positive correlation
coefficient (r=0.61, p<0.05) comes around 800nm in the
Near Infra-Red (NIR) portion. In order to determine the
plant stages more appropriate for yield forecasting, the
indices more sensitive to yield variations, pearson
correlation coefficient was calculated between the indices
and grain, fodder yield for each sampling date. It was found
that at flowering stage, almost all the indices were highly
sensitive to both grain and fodder yield variations. Different
narrowband vegetative indices like Normalized Difference
Vegetation Index (NDVI) - based VIs (NDVI1, NDVI2, NDVI3
and NDVI4) and Ratio-based VIs (RVI1 and RVI2) were
calculated to estimate the above ground biomass. Applying
linear and non-linear regression approach it was found
out that for both dry fodder yield and grain yield could be
well estimated using non-linear function  using
the ratio indices i.e., X=RVI2(735,706) and the root mean
square error (RMSE) is minimum and  is maximum for
this function.

Keywords: Canopy reflectance, Dual purpose Sorghum,
Fodder, Regression, Vegetative indices, Yield forecast.

Abbreviations: DAS: Days after sowing; GPS: Global
positioning system; LAI:  Leaf area index); NDVI:
Normalized difference vegetation index; NIR: Near infra-
red; RMS: Root mean square; RMSE: Root mean square
error; RVI: Ratio-based vegetative index.

Introduction
Sorghum (Sorghum bicolor L. Moench) is fast-growing,
warm weather annual crop that can provide plenty of feed
in mid-summer during lean period. Amongst different
variants of this crop, dual purpose one is extensively grown
at semi-arid part of India for both grain and fodder purpose.
So, reliable and timely forecast of both grain and fodder
yield of the crop is important for proper, foresighted and
informed planning to overcome several uncertainties
associated with agriculture. For breeding programme also
early prediction of crop yield can be an important tool for
identifying promising genotypes. The large scale
determination of grain and fodder yield using plant
characters requires collection of data from farmer’s fields
on characters which are not easy to measure without
involving much expertise, cost and sophisticated
instruments. Some characters contributing significantly
towards yield may not find place in the model due to these
limitations (Agarwal, 2006). So it requires including other
variables like hyperspectral indices in the model to take
care of such variables indirectly. Using hyperspectral
reflectance indices to forecast crop yield is a fast, cheap
and accurate technique. This process of crop yield
prediction mainly depends on crop spectral characteristics
and their growth and yield (Shu et al., 2006).

A few reports are available on the hyperspectral reflectance
of sorghum to explore the relation between canopy
reflectance and important physiological characteristics of
the crop. Richardson and Wiegand (1992) performed
multisite analyses of spectral-biophysical data for sorghum
and Duli et al. (2005) made a study on Nitrogen deficiency
effects on plant growth, leaf photosynthesis, and
hyperspectral reflectance properties of sorghum, but till
date no statistical model for predicting yield of the crop
using hyperspectral reflectance parameter is available.
Keeping this in view, an attempt has been made in the
present study to find out the most suitable hyperspectral
Indices to develop regression models for prediction of dual
purpose Sorghum grain and fodder yield.
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Materials and Methods
Experiment was carried out at Central Research Farm of
Indian Grassland and Fodder Research Institute, Jhansi
in 2011 and 2012 on dual purpose Sorghum genotypes
grown in All India Coordinated Sorghum Improvement
Project. The experiment comprised a Randomised Block
Design with 3 replicates and included 20 dual purpose
Sorghum genotypes. The plots were of 18.25 m2 (6.75 m
x 2.7 m) (6 rows 45 cm apart), the GPS location of the
experiment site was between 25.520N 78.550E, 25.520N
78.550E, N25.520N 0 78.550E, N25.520N 78.550E; altitude
212.75m. The standard agronomic practises of sowing
date and amount of fertilizer applied to the experiment
were followed. Canopy spectral reflectance on flowering,
filling and ripening stages were measured by using
portable Reflectance recording device, Field Spec®
(Analytical Spectral Devices, Inc., Boulder CO, USA)
which measures radiance in 751 contiguous bands from
325 to 1075 nm wavelengths. The field of view is 250.
Measurements were taken on clear, sunny days at midday
(11:00h to 14:00h). The sensor was held at a height of
1m above the ground to take readings from nadir position.
Three sampling points (each being the average of 25
scans) in each test area were recorded, and the average
value was used as hyper-spectral reflectance of this
treatment. The calibration was performed with a white
Spectral on reference panel during measurement. There
after these narrow bands spectral reflectance data are
used to calculate several Vegetative Indices (VI). The goal
of the research was to find out the optimal hyperspectral
narrow band VIs that best help model grain and dry fodder
yield of dual purpose sorghum. In the past also
researchers have used reflectance from single narrow
bands (Mariotti et al., 1996), derivatives of reflectance
spectra (Elvidge and Chen, 1995; Curran et al. 1991),
various ratio indices (Aoki et al., 1981; Carter, 1994;
Lichtenthaler, 1987) or a combinations of these
(Thenkabail et. al. 2000) and linear mixture modelling
approach (McGwire et al. 2000). Since studies revealed
that these VIs tend to asymptotically saturate in response
to high aboveground biomass (Thenkabail et al. 2000;
Mutanga and Skidmore, 2004), we can infer that linear or
non-linear relationship exists between VIs and the
biomass for the study site. Linear and non-linear
regression was carried out between grain and fodder yield
and each of the calculated VIs. The regression analysis
was performed using SAS 9.3 software.

Results and Discussion
The typical temporal change of sorghum canopy
reflectance  spectral during three stages of crop season

are shown in Fig.1. These stages were   50 DAS,
Physiological maturity and before maturity, 120 DAS.
Reflectance characteristics of the crop were almost similar
to those of general green plant. Liu et al. (2006) observed
green peak of 550nm and red light low valley of 680nm  in
visible light region of 400 to 700nm as well as plateau
area of 780-1100nm in near infrared region. At 50 DAS,
the reflectance at 555 and 675nm was lower comparatively
to other stages because of the greenness of the plant
chlorophyll content.  As the crops grew, particularly at 20/
25 DAS before harvesting the green region showed
maximum reflectance near 554 nm. However, when crop
was almost dry, due to non-availability of chlorophyll
content reflectance was higher in red region (670-690nm).
Correlation between the reflectance at each wavelength
and the aboveground biomass was worked out using
Pearson correlation coefficients at each growth stage from
flowering to grain maturity stage.

Fig. 1

Fig. 2
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Normalized Difference
Vegetative Index 1
Normalized Difference
Vegetative Index 2
Normalized Difference
Vegetative Index 3
Normalized Difference
Vegetative Index 4
Ratio Vegetation Index 1

Ratio Vegetation Index 2

Enhance between vegetation and
soil while minimizing illumination effects
Best correlation with high biomass

Best correlation with biomass

Best correlation with biomass

Enhance between vegetation and
soil while minimizing illumination effects

Best correlation with high biomass

Rouse et al. (1974)

Mutanga and Skidmore (2004)

Thenkabail et al. (2000)

Hansen and Schjoerring (2003)

Pearson and Miller (1972)

Mutanga and Skidmore (2004)

Vegetative Index                Equation Advantages                                  References
P800 - P670

P800 + P670

P755 - P746

P755 + P746

P918 - P682

P918 + P682

P708 - P565

P708 + P565

P833

P614

P755

P706

Table1. Definition of vegetation indices used in this study

Dry fodder
yield (Kg/ha)

Grain yield
(Kg/ha)

NDVI1(800,670)
NDVI2(755,746)
NDVI3(918,682)
NDVI4(708,565)

RVI1(833,679)
RVI2(735,706)

NDVI1(800,670)
NDVI2(755,746)
NDVI3(918,682)
NDVI4(708,565)

RVI1(833,679)
RVI2(735,706)

NDVI1(800,670)
NDVI2(755,746)
NDVI3(918,682)
NDVI4(708,565)

RVI1(833,679)
RVI2(735,706)

0.12863
0.05758

0.1273
-0.24545
0.11383
0.04601

0.71156**

0.69193**

0.69071**

-0.56031*

0.72596**

0.73906**

-0.07939
-0.11771
-0.09901
-0.07762
-0.08451
-0.15108

0.26291
0.19554
0.25859

-0.34168*

0.25089
0.18016

0.67924**

0.63342*

0.65617**

-0.60774*

0.67465**

0.68711**

-0.03091
-0.07957
-0.05324
-0.11513
-0.03648
-0.09554

Boot stage (50 DAS)

Flowering stage (80 DAS)

Grain maturity stage (120 DAS)

Crop stages           Hyperspectral Indices   Pearson correlation coefficient

The maximum negative correlation coefficient (r= - 0.21,
p< 0.05) appears around 690nm. The r values change
sharply from 690nm to 750nm (Fig. 2). The maximum
positive correlation coefficient (r=0.61, p<0.05) comes
around 800nm in the NIR portion. Thereafter, the spectral
reflectance indices were calculated (Table 1). These
vegetation indices based on narrow spectral bands are
reported to be well correlated with variety of vegetation
parameters such as LAI, Biomass, chlorophyll
concentration and photosynthetic activity. Table 1
summarizes the narrow band vegetation indices used to
estimate the aboveground biomass. The selected VIs can

Table 2. Correlation between canopy reflectance hyper-spectral parameters

be grouped into 2 categories: NDVI- based VIs (NDVI1,

NDVI2, NDVI3 and NDVI4 and Ratio-based Vis (RVI1 and
RVI2).

As several studies suggest that many VIs tend to
asymptotically saturate in response to high above ground
biomass (Thenkabail et al., 2000; Mutanga and Skidmore,
2004), we can infer that there might be a linear or nonlinear
relationship between the VIs and biomass in the present
study. Although linear model equation is the most popular
regression equation used in predicting various biological
parameters, the biological systems never follow linearity

* p< 0.05, ** p < 0.01



hence has little use towards prediction.  Therefore, keeping
the same thing in mind some curves are also tried using
non-linear regression analysis between the above ground
biomass and each of the VIs listed in table 1 at each growth
stage.  In order to determine the plant stages more
appropriate for yield forecasting, the indices more sensitive
to yield variations, Pearson Correlation Coefficient was
calculated between the indices and grain, fodder yield for
each sampling date (Table 2).

As the above table suggests the relationships between
each spectral index and grain/fodder yield, we found a
little association between them at both boot stage (50 DAS)
and grain maturity stage (120 DAS). At flowering stage,
almost all of the indices were found highly sensitive to
both grain and fodder yield variations. So, usefulness of
spectral reflectance indices to forecast sorghum grain or
fodder yield depends on the sampling date. It is well known
that non-green components contribute to the canopy spec-
tral reflectance; hence vegetation indices have been re-
ported to vary due to the presence of non-green vegeta-

Fig. 3

Fig. 4

tion (Van Leeuwen and Huete, 1996). Liu et al. (2004)
and Feng et al. (2007) found that correlations between
characteristic spectral indices and wheat yield from tilling
to maturity are high and yield prediction models are es-
tablished accordingly. Table 2 shows that flowering stage
(80 DAS) was the most appropriate developmental stage
for yield assessment. So, the data collected in this stage
is used to develop prediction models. Six non-linear func-
tions were tried using all these VIs collected at this devel-
opmental stage as explanatory variables separately for
above ground biomass. Non-linear regression procedure
of SAS 9.3 was applied and the parameters were esti-
mated using non-linear least square method following
modified Gauss-newton method (Draper and Smith, 1981).
Normality of the explanatory variables was checked by
normality test prescribed by Shapiro and Wilk (Rao et al.,
1985). As listed in table 3, all these models were tried
using the indices, which were highly sensitive to yield and
fodder variations and the root mean square error (RMSE)
and R2 are also given.

Fig. 5
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Table 3. Different models tried between the VIs and grain/fodder yield at flowering stage

NDVI1(800,670)
NDVI2(755,746)
NDVI3(918,682)
NDVI4(708,565)

RVI1(833,679)
RVI2(735,706)

NDVI1(800,670)
NDVI2(755,746)
NDVI3(918,682)
NDVI4(708,565)

RVI1(833,679)
RVI2(735,706)

NDVI1(800,670)
NDVI2(755,746)
NDVI3(918,682)
NDVI4(708,565)

RVI1(833,679)
RVI2(735,706)

NDVI1(800,670)
NDVI2(755,746)
NDVI3(918,682)
NDVI4(708,565)

RVI1(833,679)
RVI2(735,706)

NDVI1(800,670)
NDVI2(755,746)
NDVI3(918,682)
NDVI4(708,565)

RVI1(833,679)
RVI2(735,706)

NDVI1(800,670)
NDVI2(755,746)
NDVI3(918,682)
NDVI4(708,565)

RVI1(833,679)
RVI2(735,706)

0.46
0.40
0.43
0.36
0.47
0.47
0.44
0.42
0.42
0.41
0.47
0.48

—-

0.44
0.28
0.20

—-
0.42

—-

0.47
0.48
0.49

—-
0.44

—-
—-
—-

0.43
—-

0.41
0.44
0.46
0.48

2207.79
2327.80
2270.05
2388.96
2185.64
2185.64
2234.19
2290.72
2285.61
2294.10

2185.284
2154.78

—-

2233.61
2551.37
2680.42

—-
2283.95

—-

2274.51
2242.01
2232.47

—-
2333.85

—-
—-
—-

2264.02
—-

2303.41
2243.03
2215.71
2165.79

0.50
0.47
0.47
0.50
0.52
0.54
0.48
0.48
0.46
0.34
0.53
0.55

—-

0.36
0.42
0.35

—-
0.48

—-

0.30
—-

0.56
0.49
0.51

—-
—-
—-

—-

0.49
—-

155.50
159.78
160.04
155.50
152.20
149.09
159.05
158.93
162.36
178.57
150.98
147.72

—-

175.77
168.14
177.42

—-
164.63

—-

191.82
—-

151.77
163.15
161.15

—-
—-
—-

—-

156.61
—-

Model Hyper-spectral indices           R2                 RMSE                       R2                    RMSE
Dry fodder yield (kg/ha)       Grain yield (Kg/ha)

Linear
(Y = a + b * X)

Y = a *  Xb

Y - a +  Xb

Y = a + b *  Xc

Y = a - b *  Cx

Y =
X

a + b * X

Table 4. Global nonlinearity measures

Max Intrinsic Curvature
RMS Intrinsic Curvature
Curvature Critical Value
Max Parameter-Effects Curvature
RMS Parameter-Effects Curvature

0.0192
0.0118
0.5126
0.2237
0.1338

0.0255
0.0156
0.5126
0.1801
0.5126

In case of grain yield In case of dry fodder yield

—-: does not meet the convergence criterion
* = Multipilication
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It can be observed from the table that for both dry fodder
yield and grain yield estimation, RMSE is minimum and
R2 is maximum for function . The following two
graphs are showing the data points for observed and
predicted values using the nonlinear model

 and 
for grain yield and dry fodder yield respectively.

If we study the post convergence diagnostics for the
proposed model as revealed by the SAS procedure (SAS,
2011) from the table below (Table 4) we find that the
maximum and RMS intrinsic curvatures compared to the
critical curvature value suggests that intrinsic curvature
property of the model is not a highly non-linear one. As
such performing diagnostics with the raw residuals can
be suggestive towards the adequacy of the model.

The partial results from this SAS procedure run are shown
in panel charts (Figs 5 and 6) made on both the dependent
variables which support the previously mentioned
expectations, the low correlation between raw residuals
with the predicted values, non-significant difference
between tangential and Jacobin leverages and projected
residuals overcome some of the shortcomings of the raw
residuals.

To check the model adequacy, validity of assumptions of
regression analysis has been checked here using some
diagnostic methods, as gross violations of the assumptions
may yield an unstable model in the sense that a different
sample could lead to a totally different model with opposite
conclusions and we usually cannot detect these
departures from underlying assumptions by merely
examining the standard summary statistics like t or F
statistics or R2 (Montgomery et al., 2003). These
diagnostics methods are primarily based on the study of
model residuals.

To validate that the residuals have constant variance, the
residuals are plotted against the estimate (Figs 7 and 8).
The residuals plotted against the predicted values show
no trends or patterns. If there are any patterns like “cone”
or “sphere” shapes, that will indicate lack of model fit and
unequal variances.

Fig. 6

Fig. 7

Fig. 8
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To confirm that the residuals are not continuously being
over/under estimated, the residuals are again plotted
against the independent or explanatory variable (Figs 9
and 10) and Paired t-test on the observed and predicted
values (Figs 11 and 12) was applied to find out the
agreement between the observed grain yield and dry
fodder yield with that of the predicted one (Ajit and Parsad,
2011). It is clear from above agreement plots of predicted
and observed values that almost all predicted values are
in close agreement with the observed ones. Moreover,
the t-value of the difference between predicted and
observed values is almost zero with non-significant
differences again implies that predicted values are very
close to observed values.

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Conclusion
The capacity of hyperspectral reflectance indices to
forecast grain and fodder yield of dual purpose sorghum
is of much importance for researchers in the field of
agriculture and production and maintenance of livestock
as well as for the policy makers to have prior information
about the produce. Our results showed that, in spite of
some indices being sensitive to yield variations in previous
growth stages, flowering stage (80 DAS) was the most
appropriate stage for yield assessment. Hyperspectral
reflectance measured at this stage and particularly the
Vegetative Index RVI2 (735,706) has been proved to be a
very useful tool for dual purpose sorghum grain and dry
fodder yield estimation. So here attempts were made to
develop prediction model for both the yield parameters
using RVI2 (735,706). The different results showed that
predicted values of the proposed model were in preferred
conformity with actual observed values and residual
diagnostics established that the model can be reliable to
predict dual purpose sorghum actual grain and fodder
yield.
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