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Abstract
The present study evaluated the physical as well as
chemical vulnerability of the grasslands in the
Bundelkhand region using a comprehensive approach.
The study revealed a significant decrease in grassland
cover from 2014 to 2019 and a conforming effect on
the moisture content of the soil, especially in the
northern region, where it depeleted considerably. A very
large part of the region is vulnerable to soil acidification,
with existance of mild alkaline conditions, which might
further change the cation exchange capacity in terms of
nutrient retention. The dominanace of kaolinite as a
clay mineral increased the possibility of in-congruent
silicate weathering of plagioclase and feldspar, if further
acidification of soil occurs. To relate the sensitivity of
the active processes with the moisture avaliability in
the region, downscaling of soil moisture was done at a
spatial resolution of 1 km using LST and NDVI. The
study outlined the importance of proper soil
managmenet and prevention of sodic conditions, as a
necessary step towards mitigating the harsh physical
environment, for the sustenance of grasslands in the
region.
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Introduction
Vegetation plays a very important role in controlling the
overall dynamics of the ecosystem (Fisher et al., 2003;
Cramer et al., 2001). In regions of acute water shortage,
vegetation in the form of grasslands, become the chief
component of livestock survival (Yong-Zhong et al., 2005;
Valone et al., 2002). Remotely sensed data plays a very
crucial role in providing the information on parameters
which directly or indirectly impacts the health of the
grasslands (Gillies et al., 1997; Carlson et al., 1994;
Nicholson et al., 1994; Farrar et al., 1994).

Soil moisture is a critical parameter which reflects the
disturbances from both the land and the atmosphere (Wang
et al., 2007). The amount of moisture present in the soil in
the liquid form is essential for sustaining the growth of the
grasslands. Through satellite derived data products it is
possible to estimate the moisture at different depth profiles.
Global land data assmilation system (GLDAS) is a multi
model ensemble which has the capability to estimate the
surface as well as the subsurface soil moisture and
temperature (Rodell et al., 2004; Syed et al., 2008; Chen et

al., 2014). The GLDAS combines inputs of multiple ground
based observations through land information system (LIS)
with remotely acquired satellite products in real time and
can have a spatial resolution of upto 1 km. W ithin an
assmilation system the selection of an appropiate land
surface model (LSM) is another key aspect.Noah-MP (multi-
parameterization) as suggested by Niu et al. (2011) uses
the input of all the key interactions happening between the
atmosphere and the land and therefore, can be used for
assessing the soil moisture (kg m-2) and soil temperature
(Kelvin) at four corresponding depths i.e 0-10 cm, 10-40
cm, 40-100 cm and 100-200 cm (Wang et al., 2016; Hirsch
et al., 2014). Generally for the shrubs and grasslands
(NDVI between 0.2 to 0.3) the liquid moisture and
temperature in the top 10 cm of the soil profile is considered
critical (Nemani et al., 1993; Wang et al., 2007).
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Another factor that has been considered critical for
grasslands is the Land Surface Temeperature (LST).
Often LST is considered one of the most important
parameter forcing the drought conditions (Karnieli et al.,
2010). Gutman (1990) advocated the use of temperature
condition index (TCI) as an indirect measure for
assessing the water stress and the harshness of the
drought. It has also been argued that excessive heating
of the surface through climatic extremes gets amplified
under depleting soil moisture conditions (Teuling et al.,
2010). Grasslands have higher evaporation rates under
increased solar radiation, therefore, are more suited
under extreme temperature mitigation strategies.
Moderate resolution imaging spectroradiometer (MODIS)
sensor can be used at a temporal frequency of 1 day for
estimating day as well as night time LST at a spatial
resolution of upto 1 km (Wan et al., 2004; Fu et al.,
2011).While LST has a very strong relatioship with the
urban heat island (UHI) formation in densely populated
cities, the same interactions are not known or studied
with respect to grasslands health (Mattew et al., 2018;
Khandelwal et al., 2018). To better understand the
behaviour of soil moisture it becomes imperative to
statistically downscale these products from moderate
spatial resolution of 25 km to mediumspatial resolution
of 1 km (Senanayake et al., 2019). Soil moisture is
essentially a phenomenon related closely with NDVI and
LST (Padhee et al., 2017). Therefore, both NDVI and LST
could be used in a second order multinomial regression
algorithm to produce high resolution soil moisture
products (Song et al., 2013). The GLDAS soil moisture
products have minimum spatial resolution of 25 km.
Therefore to bettter understand the soil moisture/
temperature interactions with the vegetation, it would
become neccesary to have similar spatial resolution for
all the three products i.e NDVI (Landsat 8), LST (Modis)
and soil  moisture (GLDAS).

In Bundelkhand, green grasslands form a major
component of dietary intake for animals (Mishra et al.,
2010). According to Neel and Singh., (2013) dry sub-
humid tropical grasslands can sustain 3.75 cows ha-1

yr-1. The problem of excessive grazing and subsequent
reduction in grazinglands is also a very prevalant practise
in the region. Excessive grazing has also led to erodibility
of the soil in the region (Lal et al., 2006). Therefore, a
temporal analysis is always required in order to identify
the break point years of sudden change. In the present
investigation a time series analysis was done from 2014
till 2019 using first week of May as the reference time
period  to  assess  the impact of  soil moisture and land

surface temperature on grasslands in Bundelkhand
region of India using a comprehensive approach.

Materials and Methods
Study area: The Bundelkhand region in India extends
between the Gangetic plains in the north and the Vindhya
ranges in the south, occupying 7.08 million hectares of
land (Patel and Yadav, 2015) (Fig 1). Although the region
has a network of river confluences like Betwa and Ken,
yet the region has been designated as drought prone.
The region has three litho-tectonic belts i.e. Archean
beds, Plutonic granitic beds and Intrusive mafic dykes
(Avtar et al., 2013; Meert et al., 2010). The rocks in the
region are believed to be of three distinct categories i.e
Bundelkhand group (age older than 2.6 billion years),
Bijawar group (age between 2.6-2.4 billion years) and
Vindhyan super group (age between1.4 - 0.9 billion years)
(Ahmad, 1984; Bhattacharya., 1986). The northern region
of the study area is usually drier than the southern region
and also recieves less rainfall. While the monsoon brings
about 90% of the total rainfall between June and
September, the region experiences frequent droughts
(Avtar et al., 2013).

Fig 1. The Bundelkhand region of India, consisting of 13
districts, spread between Madhya Pradesh and Uttar
Pradesh

Normalized difference vegetation index (NDVI): The
LANDSAT 8 satellite sensor with a spatial resolution of
30 meters was used for extracting the NDVI. To minimize
the interferences from the atmosphere in the process of
optical image capturing, a composite of 32 days was
considered. A NDVI value between 0.2 to 0.3 corresponds
to grasslands and small shrubs (Weier and Herring.,
2000). Therefore, for the study, a threshold value of 0.2
and  0.3  was  chosen  to  identify grasslands  based  on



NDVI values (Fig 2). Higher NDVI values corresponded
to higher chlorophyll concentration and represented
either dense forest or thick canopy covered vegetation. In
this study, NDVI values were extracted from 2014 to 2019,
corresponding to the month of May. Four NDVI classes
ranging from 0.2 to 0.225, 0.225 to 0.250, 0.250 to 0.275
and 0.275 to 0.3 were identified for further assessing
the effect of temperature and moisture on the grassland
health.

¯ ¯ ¯

¯ ¯ ¯
0 90 18045 km 0 90 18045 km 0 90 18045 km

0 90 18045 km 0 90 18045 km 0 90 18045 km

Fig 2. The spatial extent of the grasslands declined since
2014 (represented by different shades of red colour). The
area under dense vegetation also declined (represented

by light green colour). The other land cover types
including barren lands and the water bodies (extracted
before NDVI estimation) are represented by white colour

Land surface temperature (LST): To extract the LST data,
Modis MYD11A1 (36 wavebands) product was used which
gave day and night time LST and emissivity at a spatial
resolution of 1 km (0.928 km actual) in a Sinusoidal
projection. For the day LST the usual range of value lied
between 7500 to 65535 with 1200 rows and 1200
columns to which a multiplicative correction factor of 0.02
was applied. The layers had a radiometric resolution of
16 bits with no additional offset requirement. As
compared to LANDSAT 8, the MODIS sensor retrieved
LST values based on split window algorithm which could
reduce the atmospheric errors because of differential
absorption in the two adjacent thermal bands and different
linear and non-linear regression methods being used to
estimate LST (Du et al., 2000). For this study, the data
from Land Processes Distributed Active Archive Centre
(LP DAAC) were used, which is one of the data hosting
channels of NASA Earth Observing System Data and
Information Service (EOSDIS) (Fig 3).
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Fig 3. Land surface temperature (LST) based on MODIS
(MYD11A1.006) sensor. The region divided into five LST
zones ranging from less than 45 0C, 45 to 48 0C, 48 to 51
0C, 51 to 54 0C and more than 54 0C

GLDAS soil moisture: The LSM models provide a
continuous distribution of soil moisture by integrating
field-based observations and LIS simulations at a spatial
resolution of 0.25o (25 km) or 1o (100 km). In the present
study 0.25o resolution Noah model was used which runs
data from 2014 onwards (Fig 4). The monthly composite
of soil moisture was prepared by averaging 3-hourly data
over a month time period. Apart from soil moisture, the
model also provided simulations for latent flux, soil
temperature and latent heat flux. The soil moisture in the
initial 10 cm depth was considered for the study based
on its severity in impacting the health of the grasslands.
The only problem with soil moisture was its availability
at coarse resolution, therefore, a second order
polynomial regression function of NDVI and LST
(normalized -1 to 1) was used to downscale at 1 km
resolution.

Spatial downscaling of soil moisture: Both LST and NDVI
were used to spatially downscale the soil moisture
product of GLDAS using the regression algorithm (Kim
and Hogue, 2012; Zhao and Li, 2013). The downscaling
was based on co-plotting NDVI and normalized LST to
spatially understand the aggregation pattern of data
points in a triangular shape (Carlson, 2007). Different
polynomial functions of NDVI and LST were fit in order to
statistically reduce the spatial resolution of the soil
moisture product (Table 1).

NDVINR = (NDVI – NDVImin) / (NDVImax – NDVImin) (1)
LSTNR = (LST – LSTmin) / (LSTmax – LSTmin) (2)

Physico-chemical vulnerability of the grasslands
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Fig 4. NASA Global Data Assimilation System (GLDAS)
modelled soil moisture profile for initial 10 cm depth in
kg/m2.  The NOAH land surface model (LSM) was used
to classify the region based on water content of the soil

Soil chemical characteristics: World Soil Information
(ISRIC) database was used in order to evaluate the
chemical characteristics of the soil in the Bundelkhand
region. Cation exchange capacity (CEC) and pH are the
two most important parameters that were retrieved at
varying depths (0 cm, 30 cm, 60 cm, 100 cm and 200
cm). A high CEC under slight alkaline conditions has the
ability to impact the weaterability of the rock mineral that
could trigger the release of various geogenic
contaminants like arsenic in the groundwater system
(Singh et al., 2019; Singh et al., 2020). Potential for
sustaining grasslands exists when there is high soil
organic carbon stock (SOCC). High SOCC if
complemented with high gross primary productivity (GPP)
of the soil, denotes high possibility for the primary auto-

NDVI
LSTNR

NDVI x LSTNR

NDVI2 x LSTNR

NDVI2 x LSTNR
2

NDVI x LSTNR
2

NDVI2

LSTNR
2

Intercept

132.62
76.66

-496.87
512.58
204.33
184.63

-195.83
-42.61

-7.00

-366.98
-263.28
1923.80

-3307.42
2840.88

-1747.44
595.48
240.13

65.44

2159.773
795.5615
-8291.52
19848.65

-15920.70
6693.98

-5194.29
-641.704
193.581

36.96
171.91

-2505.23
7482.07

-8384.08
2866.44
-354.26
-210.10

24.93

203.50
61.16

-802.70
2097.46

-1381.96
517.35

-518.72
-27.92

-8.00

249.89
43.27

-231.19
71.81

3547.42
-1229.72

-490.29
106.41
-19.82

Coefficient(a
ij
)    2014         2015        2016             2017                    2018                    2019

Table 1. Downscaled coefficients obtained after second order regression from coarse resolution soil moisture
product of GLDAS

*LSTNR represents normalized land surface temperature

-trophs in accelerating the organic breakdown. Under
these circumstances, presence of calcisols could act as
a potential sink for the available hazard. Therefore, all
these parameters were evaluated for understanding the
combined vulnerability in addition to LST and soil
moisture severity with time. Importantly all these
parameters correlated with the existing soil moisture
condition as with decreasing soil moisture there was a
high possibility of sodic soil formation leading to
increased alkanity of the soil and hence decrease in the
crop productivity. Sudden changes in NDVI were also
traced to these conditions changing at a sub-surface
level.

Results and Discussion
Changing grassland and soil moisture scenarios: An
inverse technique vis-a-vis for extracting high resolution
soil moisture product was applied in this study. The
approach involved expressing the satellite derived soil
moisture product as a function of NDVI and LST. Further
sequential regression helped in quantifying the
relationship in terms of variable co-efficient which were
further used for deriving high resolution imagery from
2014 to 2019 (Fig 5). A critical assessment of NDVI values
in 2014 and 2019 showed that grassland cover was
declining since 2014 (Fig 6). In fact, in the southern
Bundelkhand the change in NDVI reached to a maximum
of about - 0.05, signifying an almost class shift (Fig 2). As
one moves northwards in the study region the change in
the NDVI values further diminished. The maximum
positive and negative growths recorded in NDVI were -
0.20 and 0.05, respectively. LST too, witnessed a
decreasing trend, where the southern region is
experiencing a maximum change in day LST. The
increase in LST with corresponding decrease in NDVI
validated the hypothesis that reduction in grasslands in
changing the heat cycle of the region. In southern Bund-

Singh et al.

SMcoarse = ∑∑aij . NDVINR . LSTNR (3)
SMhigh = ∑∑aij . NDVINR . LSTNR (4)
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-elkhand some regions witnessed an increase in LST
by almost 13oC. While the difference in the LST from
2019 to 2014 decreased in the northern Bundelkhand,
but the region too is experiencing a 4oC higher LST. An
interesting observation with respect to soil moisture in
the region was that while the northern region experienced
a soil moisture reduction by almost 2 kgm-2, the southern
region had a net addition in the soil moisture content.
This behaviour was due to possible moisture recharge
by many perennial river confluences in the region. This
also signified that sustaining grasslands in the region is
not difficult as the soil still carries the moisture in amount
needed for the growth and survival of grasslands. In order
to assess the soil moisture situation better in terms of
spatial visibility, downscaling was being performed.

Fig 5. Downscaled soil moisture product derived from
GLDAS using MODIS (MYD11A2 – 1 km day LST) and
LANDSAT 8 (30 meter rescaled to 1000 meters)
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Fig 6. Behaviour of NDVI, LST and soil moisture across
the study area from 2019 to 2014

The maximum change in the vegetation cover was in the
northern Bundelkhand region in the year 2016 (Fig 2),
where there was high reduction in grassland cover in the
Datia, Jhansi, Jalaun, Hamirpur and Mahoba district.
However, this shock was recovered partly in the year
2017, but the NDVI values were decreased signifying the
formation of new grasslands with less in chlorophyll
content compared to the grassland before 2016. Districts
like Tikamgarh recovered better than other districts in
post 2016. In terms of LST, new heat hotspots have been
developed in the southern region of the study area. The
south western region of Bundelkhand could be
characterized as the most heated part with LST reaching
upto 54o C (Fig 3). The study showed that while the NDVI
was decreased under increased LST from 2019 to 2014,
there was strong agglomeration or concentration of NDVI
values within the range of 0.15 to 0.25 (Fig 7). This further
indicated that grasslands with NDVI value between 0.2
to 0.250 had better adaptability to survive. The results
showed that as LST reached 50o C or beyond there was
almost elimination of grasslands having NDVI values
between 0.250 to 0.3.With respect to soil moisture there
were two distinct clusters corresponding to northern and
southern Bundelkhand region.The northern Bundelkhand
region had lesser soil moisture and a NDVI ranged
between 0.15 to 0.250. Because of high LST there was
elimination of grasslands having NDVI ranged between
0.25 to 0.3 even with constant soil moisture. In case of
southern Bundelkhand region the same phenomenon
existed where LST played a dominant role in determining
the grasslands health as compared to soil moisture.

Fig 7. Co-plots of NDVI and LST showed the adaptability
of the grasslands with respect to increase in LST. NDVI
and soil moisture plot further validated the point that
grasslands with NDVI values between 0.2 to 0.250 were
more adaptable to survive
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Depth varying chemical characteristics of the soil:
Depth did not play any role in changing the soil CEC (Fig
8). The average CEC concentration for the Bundelkhand
region ranged between 14 to 55 c mol/kg. Usually three
clay minerals i.e., kaolinite, illite and chlorite exist in this
range based on their exchanging power with regards to
cations (Ca2+>Mg2+> H+> K+>NH4

+> Na+) (Grim., 1968).
The presence of kaolinite (Al2Si2O5(OH)4) denotes in-
congruent silicate weathering of sodic plagioclase
(Na(AlSi3)O8), calcic plagioclase (Ca(Al2Si2)O8), K-
feldspar (K(AlSi3)O8) and pyroxene under acidic
conditions. Usually the concentration of kaolinite in soil
peaks when mean rainfall is around 100 cm followed by
higher aggregation of bauxite, relating with increasing
rainfall. High CEC improves the nutrient holding capacity
of the soil. Any sudden change in pH can also be buffered
with high CEC. This highlights the fact that even if there
was loss of the top soil of the Bundelkhand region due to
erosion, the underlying layers were capable enough to
hold the nutrients and stabilize the organic complexes
essential for sustaining the crop as well as grassland
growth. However, soil acidification was the biggest threat
for the region as any further decrease in soil pH will
negatively impact the CEC of the soil leading to immediate
decline in productivity. Spatially and temporally, northern
Bundelkhand can be speculated to be experiencing a
decline in grassland cover on account of low soil CEC.
This brings out a more serious point that grassland
growth in the region is directly related to the easily
available nutrient from the surface as the soil’s nutrient
holding capacity itself is very low (CEC ~ < 30 c mol/kg).
However, the pH of the northern Bundelkhand lied
between 7.5 to 8.0, signifying that lower CEC can increase
cationic exchange in the soil system. However, lower pH
(~7.0 to 7.5) in the southern Bundelkhand showed that
the region may experience drastic changes in the
grassland cover if further acidification occurs. Another
important observation was the organic richness (soil
organic carbon content) of the region decreasing greatly
with depth. This signifies that despite having high GPP
the sub-surface energy synthesis will be less.

Another major concern for the southern Bundelkhand
was the high percentage of clay particles (> 40 %) along
with soil pH in the range of 7.0 to 7.5, as it is an optimum
condition for the release of geogenic contaminants from
the groundwater, given the occurrence of microbial
breakdown of the organic matter under the presence of
anthropogenically induced nitrate (Singh et al., 2020).
High surface carbon content (~ 49 to 169 g/kg) makes
rainfall led leaching vulnerable to contamination adsorp-

-tion on to the clay mineral specially kaolinite. The higher
soil moisture content in the southern Bundelkhand can
also be explained based on higher clay content reaching
to almost 50% of the total soil. With SOCC concentrated
mostly in the top layer of the soil, it becomes extremely
important to conserve the amount of moisture present in
this layer.

Cation Exchange Capacity 
(CEC)

c.mol/kg

Soil Organic Carbon Content
(SOCC)

g/kg

pH

Clay Content (< 2 µm)
(CC)
%

0 cm 30 cm 60 cm 100 cm 200 cm

< 20
20 - 25
25 - 30
30 - 35
> 35

< 2
2 - 4
4 - 6
6 - 8
> 8

< 6.5
6.5 – 7.0
7.0 – 7.5
7.5 – 8.0
> 8.0

< 10
10 – 20
20 – 30
30 – 40
>40

Fig 8. The variations of various chemical parameters of
the soil with depth

Conclusion
The study showed that the area under grasslands was
declined consistently and significantly and therefore,
there would be a net negative stress on the livestock
survival in the region. The drastic changes in LST, a
phenomenon becoming dominant with reduction in
grasslands, is a challenge for the region. While the soil
moisture remained intact it only showed that there is
ample opportunity in the region to bring up the grassland
cover. One of the anthropogenic threats to the overall
health of the grasslands could be the excessive grazing
done in the region, a point raised by many researchers
through scientific literatures in the past. Therefore, a
holistic approach must be adopted in limiting the
excessive grazing by the livestock so that the day time
LST could be limited to below 50o C, a factor found very
critical for the health of the grasslands. The nutrient
carrying capacity of the soil can severely be deteriorated
if no measures are being taken in order to prevent the
acidification of the soil system.
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