Contribution of Populus deltoides based agroforestry systems in atmospheric CO2 reduction in northern states of Uttar Pradesh and Uttarakhand

Authors

  • R.H. Rizvi ICAR-Central Soil Salinity Research Institute, RRS, Lucknow-226002, India
  • A.K. Handa ICAR-Central Agroforestry Research Institute, Jhansi-284003, India
  • K.B. Sridhar ICAR-Central Research Institute on Dryland Agriculture, Hyderabad-500059, India
  • R.K. Singh CIFOR-ICRAF, South Asia Program, New Delhi-110012, India
  • Sunil Londhe CIFOR-ICRAF, South Asia Program, New Delhi-110012, India
  • S.K. Dhyani CIFOR-ICRAF, South Asia Program, New Delhi-110012, India
  • Javed Rizvi CIFOR-ICRAF, South Asia Program, New Delhi-110012, India
  • Gaurav Dongre ICAR-Indian Institute of Farming System Research, Modipuram-250110, India
  • Maneesh Yadav ICAR-Central Agroforestry Research Institute, Jhansi-284003, India

Keywords:

Agroforestry systems, Carbon-di-oxide, Climate change, Object-oriented classification, Populus deltoides

Abstract

The present study aimed at estimating area under poplar plantations and their contribution in reduction of atmospheric CO2 in Uttar Pradesh and Uttarakhand states. Object-oriented classification technique was applied on high resolution remote sensing data (LISS-IV/ spatial resolution- 5.8 m) for mapping agroforestry/ poplar area in six study districts. Total agroforestry area in six districts was estimated to be 91622.73 ha. Poplar area was found to be the highest in Bijnor district (12840.53 ha) of Uttar Pradesh followed by Haridwar district (8096.25) of Uttarakhand. As % of agroforestry area in district, Haridwar has the highest poplar area (61.2%). Estimated stem, aboveground and total biomass of poplar plantations were found to be the highest in Baghpat district because of high tree density. Muzaffarnagar district has second the highest values of estimated stem, aboveground and total biomass (128.55, 153.89 and 194.80 t ha-1 , respectively). Carbon stock was also found to be the highest in Bijnor district (0.909 million tonnes) followed by Muzaffarnagar district (0.813 million tonnes). About 2.795 million tonnes of C-stock in total biomass was assessed in five selected districts of Uttar Pradesh and Uttarakhand. In this way, contribution of these districts in atmospheric CO2 absorption was to the tune of 10.257 million tonnes in total biomass of poplar plantations. It was concluded that agroforestry systems in general and poplar based systems in particular have significant contribution in reduction of atmospheric CO2 . Hence, they would certainly play an important role in climate change mitigation at state/ regional level.

Downloads

Download data is not yet available.

Uploaded

19-11-2022
Dimensions Badge

How to Cite

R.H. Rizvi, A.K. Handa, K.B. Sridhar, R.K. Singh, Sunil Londhe, S.K. Dhyani, Javed Rizvi, Gaurav Dongre, & Maneesh Yadav. (2022). Contribution of Populus deltoides based agroforestry systems in atmospheric CO2 reduction in northern states of Uttar Pradesh and Uttarakhand. Range Management and Agroforestry, 43(2), 263–268. Retrieved from https://publications.rmsi.in/index.php/rma/article/view/682

Issue

Section

Articles